бионическая нога что это такое

Я, киборг: Как работают искусственные конечности и экзоскелеты

Бионические протезы

Бионика соединяет биологию и технику, изучает нервную систему и нервные клетки, а также исследует органы чувств человека для создания новых технологических устройств. Одно из главных направлений этой науки — исследования, связанные с созданием протезов и имплантов. Электронные устройства заменяют утраченные органы и конечности, взаимодействуя с нервными клетками. Их производят из искусственных материалов, но человек может управлять ими при помощи собственной нервной системы за счёт метода целевой мышечной реиннервации. Его суть состоит в том, что нервы, которые раньше управляли, например, ампутированной конечностью, соединяют с сохранившимися мышцами и те посылают сигналы на электронные датчики протеза.

После ампутации конечности в организме человека остаются двигательные нервы, их хирурги соединяют с участками крупной мышцы — например, грудной, если речь идёт об ампутированной руке. Когда человек думает, что нужно пошевелить пальцем, мозг отправляет сигнал грудной мышце. Сигнал фиксируется электродами, которые отправляют импульс по проводам в процессор внутри электрической руки к нужному участку. Протез совершает движение.

Чтобы человек мог чувствовать прикосновения, тепло и давление электронной конечностью, хирурги пришивают оставшийся чувствительный нерв к участку кожи на груди, этот метод называется целевой сенсорной реиннервацией. Сенсоры протеза передают сигнал этому участку кожи, а оттуда он поступает в мозг, и пациент может одёрнуть руку, если чувствует, например, высокую температуру. Сейчас компании активно работают над внедрением бионических конечностей. В 2013 году появилась первая бионическая нога, которая полностью контролировалась мозгом.

Бионическое колено

© Heinz-Peter Bader / Reuters

Бионические руки и ноги

В 2012 году американец Зак Воутер, которому ампутировали ногу после аварии, при помощи бионического протеза поднялся по лестницам на смотровую площадку чикагского небоскрёба. «Когда Зак хочет сделать движение, мозг посылает вниз по спинному мозгу импульс к неповреждённой мышце. В протезе установлены электроды, которые контролируют эти импульсы. Специальная компьютерная программа декодирует полученные данные и передаёт их протезу для выполнения, будь то сгибание или выпрямление колена, сгибание лодыжки или приём сидячего положения», — объяснял профессор Чикагского университета Леви Харгрув.

Микрокомпьютер протеза собирал данные от 11 электродов, закреплённых на бедре Воутера. Роботизированная нога получала электрические импульсы от нервных волокон, пришитых к подколенному сухожилию американца во время ампутации, — они сохранили способность передавать импульсы в нижнюю часть конечности.

Канадский наколенник можно назвать экзоскелетом — устройством, предназначенным для восполнения утраченных функций, увеличения силы мышц и расширения амплитуды движений. Портал SnapMunk писал в этом году: «Экзоскелеты сделали переход от научной фантастики к осязаемой технологии в военной и промышленной индустрии. Они помогут тем, кто болен параплегией, расстройствами мышц, имеет двигательные нарушения в повседневной жизни».

В прошлом году российская компания «ЭкзоАтлет», которая занимается производством экзоскелетов для людей с параличом нижних конечностей, привлекла 16 млн рублей от фондов Moscow Seed Fund и «Биофонд РВК». Пока компания распространяет бесплатные пилотные версии и планирует, что её экзоскелеты станут значительно дешевле зарубежных аналогов.

Эксперименты

На конференции Code Conference 2016 предприниматель Илон Маск заявил: «Людям необходимо создать компьютеры, связанные с корой головного мозга. В противном случае мы будем настолько ниже роботов в интеллектуальном плане, что станем их домашними питомцами. Они будут относиться к нам, как сейчас люди относятся к домашней кошке».

Помимо создания протезов и имплантов биотехнологические компании ведут эксперименты по печати органов на 3D-принтере. Уже удалось напечатать сердечные и сосудистые ткани из стволовых клеток взрослых людей в рамках экспериментов. В 2015 году российская компания 3D Bioprinting Solutions напечатала щитовидную железу мыши, которая была успешно имплантирована. Человеческие 3D-органы сейчас всё чаще используют для предварительного планирования сложных хирургических операций. Так, несколько месяцев назад китайские врачи спасли девятимесячного ребёнка благодаря распечатанной заранее модели сердца. Американская Organovo уже производит ткани печени, используемые в качестве образцов для тестирования новых лекарственных препаратов на эффективность, токсичность и побочные эффекты.

Скептики утверждают, что полноценные органы напечатать невозможно, потому что они имеют сложную структуру. Наиболее вероятно воссоздание щитовидной железы, у которой нет сложной системы протоков для выведения продуктов деятельности. Однако и там возникает много вопросов, связанных с тем, как минимизировать риски.

В июне главный учёный в компании Techshot, давний партнёр NASA по части биотехнологий, заявил, что компания готова напечатать сердце со стволовыми клетками к 2024 году. В конце 2015-го Techshot разработала метод производства кровеносных сосудов из собственных стволовых клеток пациента и рассчитывает, что он поможет биологам в будущих экспериментах.

Фотография на обложке: Peter Endig / EPA

Источник

Бионические протезы: на что они способны, и когда мы станем киборгами?

бионическая нога что это такое. Смотреть фото бионическая нога что это такое. Смотреть картинку бионическая нога что это такое. Картинка про бионическая нога что это такое. Фото бионическая нога что это такое

Бионические протезы позволяют людям, оставшимся без ноги или руки, жить полноценной жизнью. Но по факту ими пользуются лишь 10% людей, лишившихся конечностей. Могут ли бионические протезы в будущем сделать из нас киборгов? И почему этого еще не произошло?

Как устроены бионические протезы?

Бионическим считается протез, который частично или полностью заменяет утраченный орган и выполняет его функции. Важно: к бионическим не относят косметические протезы, которые просто создают видимость руки или ноги. Например, рука, которая не двигается, а просто висит — это косметический протез. А если она может сгибаться и двигать пальцами — бионический.

Самые простые бионические протезы — механические: они сгибаются и разгибаются за счет оставшихся мышц. В более сложных используют датчики, которые реагируют на нервные импульсы и воспроизводят более сложные движения — даже мелкую моторику. Наконец, сейчас появились протезы, которые соединены с мозгом, и отвечают на его сигналы напрямую, минуя мышцы.

Но обо всем по порядку.

Эволюция бионических протезов

Первые протезы появились более 3 тыс. лет назад, в Древнем Египте. Это были деревянные пальцы, которые защищали от мозолей при ходьбе в сандалиях.

В XVI веке немецкий рыцарь Готфрид носил железную руку, чьи пальцы сгибались при нажатии кнопки на ладони. Пишут, что с ее помощью он мог даже писать пером.

В XVIII—XIX веках в Викторианской Англии носили механические устройства, которые приводились в движение с помощью рычагов и гибких тросов. Протезы становились более функциональными — у них больше подвижных суставов — и эстетичными: их форма все больше похожа на настоящие конечности. Некоторые даже украшали чеканкой или гравировкой.

В XX веке протезы делают тяговыми: чтобы согнуть или разогнуть конечность, нужно потянуть за рычаг. На смену дереву и железу приходят облегченные металлы и пластик. В итоге протезы становятся легкими — исчезает дисбаланс между травмированной частью тела и здоровой. Пластиковые модели еще и выглядели максимально реалистично, помогая обладателю справляться со стеснением при ношении протеза.

Наконец, в 1958 году впервые прозвучал термин «бионический»: его придумал военный врач Джек Стил, занимавшийся медицинскими и аэрокосмическими исследованиями. Он исследовал природные процессы и структуры, а затем использовал их для военных разработок. В том же году в СССР разработали первую микроэлектрическую руку.

Вдохновленный исследованиями Стила, американский писатель-фантаст и авиационный эксперт Мартин Кейдин выпустил в 1972 году книгу «Киборг», где впервые описал «бионических людей».

Первую бионическую руку в современном понимании этого слова сделали в 1993 году для Джона Кэмпбелла. Она приводилась в движение за счет датчиков, подсоединенных к мозгу и спрятанных под кепкой.

В 2007-м канадская Touch Bionics представила i-limb — первый широко доступный бионический протез. Эта рука весила всего 25 кг, обладала тонкими пальцами и открывала больше возможностей для мелкой моторики: от работы с мышкой до завязывания шнурков. Протез крепится на гильзе, легко закручивается и откручивается.

В 2010-м компания BeBionic представила на Международном конгрессе по протезированию и ортопедии в Лейпциге первый серийный протез. А первый широко доступный — Symbionic Leg — выпустила в 2011-м исландская Össur. В 2013 году она дополнила модель микропроцессорным управлением: теперь протез подстраивался под походку своего владельца.

Следующим этапом стали протезы, управляемые при помощи мозга. В 2015 году Агентство перспективных исследовательских проектов в области обороны США (DARPA) испытала такой во время полета на авиасимуляторе F-35: им управляла парализованная женщина с помощью механических рук.

В 2018 году появились первые протезы для глаза — Argus II. Он помогает частично восстановить зрение за счет электростимуляции оставшихся клеток.

Современные протезы используют разработки робототехники, умеют имитировать индивидуальные жесты, передавать тактильные ощущения. Наконец, экзоскелеты — это переходный этап: они не заменяют утраченные органы, а дополняют, расширяя возможности человека. С их помощью люди без физподготовки могут поднимать тяжести, а парализованные — двигаться.

Сколько стоят бионические протезы (и почему так дорого)

В России бионическая рука обойдется от 100 тыс. до 1,5 млн руб.

Пока протезы так и не стали массовыми, а их разработки обходятся достаточно дорого, объединяя инженеров, биологов, медиков. При этом создаются протезы каждый раз индивидуально: гильза, к которой крепится бионическая рука или нога должна идеально подходить по форме и размеру. Иногда для этого приходится делать несколько моделей, а на тренировки и реабилитацию уходят недели.

В большинстве случаев протезы оплачивает страховая компания или государство — как в России. Но для этого нужно пройти много инстанций и медкомиссию, и выбор моделей будет очень узким.

Самые-самые: руки из Lego, ноги для спортсменов и супермоделей

В последние годы бионические протезы выполняют не только свою основную функцию — они стали чем-то большим: образом жизни, увлечением и даже модным аксессуаром.

Источник

Появилась искусственная нога с открытым исходным кодом

Ученые из США разработали протез с открытым исходным кодом, который весит всего 4 кг. Из-за открытой лицензии стоимость устройства стала втрое дешевле.

Читайте «Хайтек» в

Исследователи объяснили, что колени, лодыжки и ноги, находящиеся в стадии разработки во всем мире, чтобы помочь пациентам ходить, оснащены электродвигателями. Для получения максимальной отдачи от такого мощного протезирования требуются безопасные и надежные системы управления, которые могут учитывать множество различных типов движений: например, переход от шагания по ровной земле к хождению вверх или вниз по пандусам или лестницам.

Для решения этой проблемы ученые разработали устройство под названием Open Source Leg. Они подробно рассказали о результатах своих исследований в журнале Nature Biomedical Engineering. Сопровождающие искусственную конечность бесплатные пошаговые руководства призваны помочь исследователям, желающим собрать ее или заказать для нее детали. Исследователи также выпустили видеоматериалы, иллюстрирующие процесс сборки и тестирования аппаратуры, а также разработали код для программирования ходьбы протеза с помощью системы предварительного контроля.

Бионическая нога, которую они разработали, весит всего 4 кг. Хотя она значительно легче биологической ноги, для пациентов она все же кажется тяжелее, потому что они прикрепляется не вплотную к скелету, а к протезному изделию. Устройство с открытым исходным кодом стоит от 10 до 30 тыс. долларов, в зависимости от варианта. Коммерчески доступные протезы с питанием стоят до 100 тыс. долларов, отмечают исследователи.

К окончанию своего исследования ученые провели клинические испытания Open Source Leg с тремя добровольцами. Когда они носили новое устройство в больничной обстановке, они смогли достичь целей, поставленных физиотерапевтами — ходили вверх и вниз и отметили, что устройство дает им ощущение поддержки, отзывчивости и плавности.

Источник

«Умная» нога: как ученые научили протез понимать сигналы головного мозга

бионическая нога что это такое. Смотреть фото бионическая нога что это такое. Смотреть картинку бионическая нога что это такое. Картинка про бионическая нога что это такое. Фото бионическая нога что это такое

Институт электронных управляющих машин (ИНЭУМ) был основан в 1958 году изобретателем советских ЭВМ Исааком Бруком (теперь институт носит его имя). Сотрудники института, который сейчас входит в структуру «Ростеха», до сих пор занимаются разработкой вычислительных машин и микропроцессоров для государственных нужд, в том числе и оборонных.

Замгендиректора и главный конструктор по медицинской технике ИНЭУМа Геннадий Знайко тоже посвятил многие годы разработкам суперкомпьютеров, но перестройка заставила его сменить сферу деятельности. А в начале 2016 года под его руководством команда ученых ИНЭУМа создала искусственную ногу, которая управляется сигналами от мозга. При поддержке «Ростеха» ИНЭУМ рассчитывает стать пионером в серийном производстве таких агрегатов в России, а возможно, и в мире.

Последователь Винера

Геннадию Знайко 66 лет. В институт Брука он устроился в 1980-х. До этого выпускник факультета приборостроения МГТУ им. Н.Э. Баумана работал в вычислительном центре Мосгорисполкома. Ученый с детства «интересовался философским осмыслением увеличения производительности человека». Еще школьником он познакомился с трудами «отца кибернетики» Норберта Винера и понял, что будущее за искусственным интеллектом. «Вся история развития вычислительной техники прошла перед моими глазами», — вспоминает он. Он успел поработать, например, на вычислительном комплексе «Урал», работавшем на электронных лампах, и на советском компьютере «Днепр», который занимал 40 кв. м, а программы вводились с фотопленки.

В 1982 году Знайко стал заведующим лабораторией ИНЭУМа и подключился к разработке советской серии вычислительных комплексов СМ ЭВМ. Эти машины до сих пор используются в системах радиационного контроля на АЭС «Росатома» и в системах управления движением поездов Московского метрополитена (например, на станциях «Бульвар Дмитрия Донского» и «Парк Победы»).

В 1990-е для науки настали тяжелые времена. Госфинансирование разработок прекратилось, штат ИНЭУМа сократился с 2500 до 300 человек. Оставшимся ученым пришлось думать, как заработать. «Мы искали пути, чтобы, не имея крупного производства, создать дорогой и малосерийный продукт», — вспоминает Знайко. Первым опытом стали печатные платы для принтеров. Ученые наладили их производство на мощностях ИНЭУМа и продавали предприятиям, которые использовали платы для печати квитанций о зарплате.

В 1990 году Знайко, который к тому времени возглавлял в ИНЭУМе отдел, познакомился с председателем комитета по новой медицинской технике Минздрава Тамарой Носковой. Она, по словам Знайко, искала разработчиков для переносного эхоэнцефалодоплерографа — прибора ультразвукового исследования головного мозга для выявления гематом и опухолей. Это, решил ученый, то, что нужно: дорогой немассовый продукт, который можно производить своими силами. Сам он спустя некоторое время возглавил в институте медицинское направление.

$434 млн составил объем мирового рынка роботизированных протезов в 2015 году

Источник: Spearhead Acuity Business Research & Consulting

Заметил нишу

В апреле 2012 года Минпромторг объявил конкурс на научные изыскания для федеральной целевой программы «Развитие фармацевтической и медицинской промышленности Российской Федерации на период до 2020 года» (так называемая программа «Фарма-2020»). Один из лотов — создание за 3,5 года «базовой модели экзопротезов с электронным управлением на основе импульсов головного мозга».

На НИОКР и опытную разработку Минпромторг был готов потратить 500 млн руб. Знайко заявил ИНЭУМ на участие. Других претендентов не нашлось. Конкурс был признан несостоявшимся, а Минпромторг заключил с ИНЭУМом контракт как с единственным участником.

Сейчас на мировом рынке представлены два типа роботизированных протезов, рассказывает профессор биофака МГУ Александр Каплан: когда команды на протез поступают от датчиков в нем самом либо от датчиков, которые считывают электрические сигналы с оставшихся мышц. Это ограниченное управление, признает Каплан. «Наиболее естественный путь управления протезом — «подумать», то есть непосредственно от мозга», — объясняет он. Над разработкой протеза, который управлялся бы от мозга, работа идет, по словам ученого, во всем мире. Но на рынке таких образцов еще нет.

Самых заметных результатов в разработке протезов, управляемых с помощью мозга, достиг Университет Джонса Хопкинса. В 2006 году его ученые вместе с Агентством по перспективным оборонным научно-исследовательским разработкам США (DARPA; подразделение Министерства обороны США) запустили программу «Революционное протезирование». Спустя шесть лет представили прототип протеза руки, который управлялся с помощью электродов, подсоединенных к головному мозгу. А в 2015-м сотрудники университета представили протез руки, способный передавать своему владельцу тактильные ощущения. В прошлом же году исландская Össur объявила об успешном создании бионического протеза ноги, управляемого человеческим мозгом.

Основная задача — максимально приблизить работу системы из «мехатроники, материалов и датчиков» к естественным движениям, говорит Знайко. Выиграв конкурс Минпромторга, он рассудил, что технологии и опыт в создании высокотехнологичных медизделий у ИНЭУМа уже есть, а восполнить недостающие компетенции можно за счет партнеров.

Шапочка и датчики

«Специалистов в этой области можно по пальцам одной руки пересчитать», — говорит Знайко. Прошерстив информацию, он вышел на двух профессоров — Сергея Щукина из МГТУ им. Н.Э. Баумана и Александра Каплана из МГУ. У Щукина были разработки, позволяющие считывать электрические импульсы от мышц. А Каплан разрабатывал интерфейс «мозг — компьютер» (внешне выглядит как шапочка, расшитая датчиками), который преобразует сигналы мозга в команды для внешних устройств, например протезов. На основе контрактов, которые ИНЭУМ заключил с МГУ и МГТУ (суммы Знайко не раскрывает, ссылаясь на коммерческую тайну), Щукин и Каплан предоставили свои разработки команде программистов Знайко. А те, по его словам, «научили» протез через внешние датчики распознавать как нервные импульсы от оставшейся конечности, так и сигналы мозга, и реагировать на них.

Чтобы изготовить опытные образцы протезов, Знайко выбрал 12 предприятий «от Сибири до Москвы» — например, производителей деталей из углепластика, высокоточных механических компонентов и электродвигателей, перечисляет ученый. Прошедшие отбор поставщики предоставили в ИНЭУМ гарантийные письма о готовности выпускать до 1 тыс. штук своих деталей без дополнительных капвложений, рассказывает Знайко. Назвать контрагентов он отказался, опять ссылаясь на коммерческую тайну, но признал, что часть из них входит в «Ростех».

бионическая нога что это такое. Смотреть фото бионическая нога что это такое. Смотреть картинку бионическая нога что это такое. Картинка про бионическая нога что это такое. Фото бионическая нога что это такое

Представитель «Ростеха» подтвердил, что входящие в госкорпорацию предприятия участвуют в производстве компонентов для проекта ИНЭУМа. Задействованы, по словам представителя госкорпорации, например, Рыбинский приборостроительный завод и «Московский машиностроительный экспериментальный завод — композиционные технологии». Взаимодействие предприятий происходит на договорных условиях, подчеркивает он.

На разработку и изготовление опытных образцов у ИНЭУМа ушли все выделенные Минпромторгом средства (0,5 млрд руб.) и 3,5 года: полтора — на исследования и еще два — на опытно-конструкторскую работу. Сейчас искусственная нога из трех модулей (колено, голень и стопа) прошла технические испытания внутри ИНЭУМа. Следующий шаг: технические испытания в лабораториях Росздравнадзора (они еще не начались). После них ИНЭУМ начнет медицинские испытания на пациентах. Все вместе займет около года, рассчитывает Знайко. В итоге ИНЭУМ сможет зарегистрировать протез в Росздравнадзоре как медицинское изделие и вывести его на рынок.

47 тыс. заявок в среднем в год поступает на получение различных протезов

328 инвалидов получили роботизированные протезы от государства в 2015 году

Источники: Министерство труда и социальной защиты РФ, данные ИНЭУМа

Потеснить импорт

Основным заказчиком протезов в России является государство. Оно обеспечивает более 95% потребности населения в «технических средствах реабилитации», следует из ответа Минтруда на запрос РБК. Протезы закупают подведомственные Минтруду протезно-ортопедические предприятия (ПрОПы; всего 71 предприятие в форме ФГУПа) на средства Фонда социального страхования. В федеральном бюджете на 2016 год на обеспечение инвалидов «техническими средствами реабилитации» заложено, по данным представителя Минтруда, 29,8 млрд руб. В год в среднем поступает более 47 тыс. заявок на «получение протезов различных модификаций», говорит она.

В прошлом году было удовлетворено 76% заявок, отмечает представитель Минтруда: «Это связано с продолжительным циклом изготовления протеза». Чтобы получить протез, пострадавший обращается в подведомственные Минтруду федеральные учреждения медико-социальной экспертизы. Там разрабатывают индивидуальную программу реабилитации и подбирают необходимый тип и конструкцию протеза. На основе этих рекомендаций ПрОП собирает протез из комплектующих. Собственного производства у ПрОПов нет, комплектующие они закупают через конкурс. Среди поставщиков представитель Минтруда выделяет Ottobock, Össur, британскую Blatchford и научно-производственную фирму «Орто-Космос».

По градации Минтруда протезы делятся на четыре типа: косметические, функционально-косметические, рабочие и активные. Последние можно считать роботизированными, отмечает представитель Минтруда: они работают от внешнего источника энергии и «обеспечивают наиболее полное восстановление утраченных функций конечности». В 2015 году государство потратило на закупку модулей роботизированных протезов чуть более 410 млн руб. Самым востребованным оказался роботизированный модуль бедра — их было закуплено 203 штуки. По подсчетам Минтруда, средняя стоимость такого изделия составила 1,6 млн руб. Роботизированные протезы представлены на российском рынке только импортными изделиями, говорит директор по производству «Орто-Космоса» Степан Головин.

Качественный роботизированный протез в сборе стоит сейчас 2–3 млн руб., утверждает Знайко. Аналогичные цифры приводит и Головин из «Орто-Космоса». Так, искусственная нога из модуля стопы и голеностопа Triton smart ankle и коленного модуля C-Leg 4 (оба от Ottobock) обойдется примерно в 1,8 млн руб., следует из анализа рынка, подготовленного ИНЭУМом (цены 2015 года).

Протезы ИНЭУМа после запуска производства будут стоить от 700 тыс. до 1 млн руб., уверяет Знайко. Цена должна быть ниже за счет использования российских материалов и комплектующих, объясняет ученый. Характеристики модулей для протезов ИНЭУМа сопоставимы с импортными аналогами, следует из анализа рынка, подготовленного институтом Брука. Модуль стопы, разработанный ИНЭУМом, как и Proprio foot от Össur, адаптируется к движению по наклонной плоскости и лестнице, поднимает носок при ходьбе и подстраивается под высоту каблука. Судя по документу, модуль ИНЭУМа уступает импортному только в весе — при весе 1,5 кг он тяжелее на 100 г. Разработка команды Знайко будет дешевле в 2,5 раза, утверждают авторы анализа: 392 тыс. руб. против 996,8 тыс. руб. за Össur. Участники рынка, опрошенные РБК, не смогли оценить разработки ИНЭУМа: они не прошли сертификацию и еще не представлены на рынке.

700 тыс. руб. и выше может стоить протез от ИНЭУМа после запуска производства

2 млрд руб. рассчитывает ИНЭУМ заработать на продаже протезов за шесть лет

Источник: данные ИНЭУМа

Роботы для молодых

В прошлом году государство закупило модули роботизированных протезов для 328 пациентов, следует из данных Минтруда. Как правило, роботизированные протезы получают инвалиды молодого возраста, отмечает представитель ведомства: людям пожилого возраста, а также пациентам с тяжелыми заболеваниями сердечно-сосудистой системы, нарушением координации движения или психических функций «может быть противопоказано использование сложных изделий, требующих значительных усилий и внимания при эксплуатации».

На самом деле потребность в роботизированных протезах гораздо больше, чем несколько сотен в год, уверен Знайко. Примерно половина заявок на протезы поступает от людей трудоспособного возраста до 60 лет, говорит он, основываясь на данных Минздрава. Если «из этих людей взять наиболее активных, которые хотят ходить с минимальными ограничениями, на велосипеде ездить», то получится как минимум 16 тыс. потенциальных потребителей роботизированных протезов, считает ученый.

«Емкость рынка гигантская», — согласен исполнительный директор кластера биомедицинских технологий «Сколково» Кирилл Каем. Но так как основным заказчиком является государство, реальный спрос ограничен возможностями бюджета, отмечает он. «В ближайшее время существенного изменения финансирования закупок протезов с электронным управлением не ожидаем», — признает заместитель гендиректора группы «ОТТО БОКК Россия» Андрей Костин. Из-за бюджетных ограничений более вероятно, что выбор будет сделан в пользу дешевых решений, считает он: например, протезов с гидравлическим или пневматическим управлением. «Они вполне функциональны и удовлетворяют запросам большинства людей», — заключает он и добавляет, что они «дешевле электронных протезов в три-четыре раза». Качество не то, возражает Знайко: протез от ИНЭУМа будет управляться почти на подсознательном уровне. Ученый считает, что у его проекта существует даже экспортный потенциал: «Например, в Китае 90 млн людей нуждаются в протезировании нижних конечностей».

На сертификацию в Росздравнадзоре и разработку линейки типоразмеров ему требуется еще около 130 млн руб. Покрыть затраты Знайко надеется за счет еще одной субсидии Минпромторга или частных инвестиций. «Ростех» намерен способствовать ИНЭУМу в прохождении сертификации, кроме того, не исключено предоставление внутрикорпоративного займа, говорит представитель госкорпорации. Обсуждать подробности он отказался, сославшись на отсутствие определенности.

Если все сложится удачно, то в начале 2018 года Знайко рассчитывает выпустить первую партию из ста роботизированных протезов. И в течение последующих пяти лет нарастить производство до 700 штук в год. Чистая прибыль от продажи первой партии в 2018 году составит 3,6 млн руб. при выручке 22 млн руб., следует из бизнес-плана ИНЭУМа. К 2023 году суммарная чистая прибыль за шесть лет превысит 356 млн руб., выручка — 2 млрд руб.

Даже если разработки ИНЭУМа не будут пользоваться массовым спросом, их перспективы «колоссальны», считает представитель «Ростеха»: «Это технологии, за которыми будущее». По его мнению, научные наработки и компетенции, полученные при создании роботизированных протезов, можно будет использовать как в гражданских, так и в военных целях. Например, создать антропоморфных роботов, способных выполнять опасную для человека работу, или экзоскелеты для реабилитации парализованных людей.

«Мы предполагаем использовать весь потенциал, который у нас сейчас есть», — с готовностью подтверждает Знайко, а это, по его словам, достижения в нейротехнологиях, мехатронике, новых материалах. Если бы человечество не стремилось к развитию, то до сих пор ездило бы на телегах, отмечает он: «Жизнь заставляет действовать!»

По прогнозу профессора Каплана, через пять лет роботизированные протезы займут 85% мирового рынка, из них 20% будут управляться мозгом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *