что значит генератор в атернос

Генераторы и итераторы в Python

Генератор в Python – одна из самых полезных и специальных функций. Мы можем превратить функцию в итератор, используя генераторы Python.

Базовая структура генератора

По сути, генератор в Python – это функция. Вы можете рассматривать следующее, как базовую структуру генератора.

В приведенной выше структуре вы можете видеть, что все похоже на функцию, за исключением одного ключевого слова yield. Это ключевое слово играет жизненно важную роль. Только использование yield превращает обычную функцию в генератор.

Обычная функция возвращает какое-то значение, генератор возвращает какое-то значение и автоматически реализует next() и _iter_.

Генератор написан как обычные функции, но использует оператор yield всякий раз, когда они хотят вернуть какие-то данные. Каждый раз, когда функция next() вызывается для функции генератора, он возобновляет работу с того места, где он остановился (он запоминает все значения данных и какой оператор был выполнен последним).

Давайте теперь изучим каждую строку предыдущего кода:

Если вы запустите указанную выше программу, она выдаст следующее:

Обратите внимание, что приведенный выше результат не является значением. Фактически это указывает, где находится объект. Чтобы получить реальное значение, воспользуйтесь итератором. Затем next() будет вызываться для объекта, чтобы получить следующее полученное значение.

Если вы хотите распечатать сгенерированные значения без цикла, вы можете использовать для него функцию next(). Если вы добавите еще одну строку в приведенный выше код, как показано ниже.

Затем он выведет значение 10, которое было передано в качестве аргумента и получено.

Получить значение генератора с точным вызовом next()

Теперь взгляните на следующую программу, в которой мы вызываем функцию next() генератора.

В приведенном выше коде вы должны знать точное количество полученных значений. В противном случае вы получите некоторую ошибку, так как функция генератора fruits() больше не генерирует значения.

Приведенный выше код будет выводиться следующим образом:

Получение значения генератора с косвенным вызовом next()

Вы можете получить значения генератора, используя цикл for. Следующая программа показывает, как можно распечатать значения с помощью цикла for и генератора. Это даст тот же результат.

Порядок работы

Давайте теперь посмотрим, как на самом деле работает генератор. Обычная функция завершается после оператора return, а генератор – нет.

В первый раз мы вызываем функцию, она возвращает первое значение, полученное вместе с итератором. В следующий раз, когда мы вызываем генератор, он возобновляет работу с того места, где он был приостановлен ранее.

Все значения не возвращаются одновременно из генератора, в отличие от нормальной функции. Это специальность генератора. Он генерирует значения, вызывая функцию снова и снова, что требует меньше памяти, когда мы генерируем огромное количество значений.

Вывод программы

Посмотрим другой код:

что значит генератор в атернос. Смотреть фото что значит генератор в атернос. Смотреть картинку что значит генератор в атернос. Картинка про что значит генератор в атернос. Фото что значит генератор в атернос

Помните, что range() – это встроенный генератор, который генерирует число в пределах верхней границы.

Итератор – это объект, который используется для итерации по итерируемому элементу.

Большинство объектов в Python являются итеративными. Все последовательности, такие как Python String, Python List, Python Dictionary и т.д., являются повторяемыми. Что такое итератор? Предположим, группа из 5 мальчиков выстроилась в линию. Вы указываете на первого мальчика и спрашиваете его, как его зовут. Затем он ответил. После этого вы спрашиваете следующего мальчика и так далее. Изображение ниже иллюстрирует это.

что значит генератор в атернос. Смотреть фото что значит генератор в атернос. Смотреть картинку что значит генератор в атернос. Картинка про что значит генератор в атернос. Фото что значит генератор в атернос

В этом случае вы Итератор. Очевидно, группа мальчиков – повторяющийся элемент.

Протокол Iterator

Протокол Iterator в Python включает две функции. Один – iter(), другой – next(). В этом разделе мы узнаем, как пройти по итерируемому элементу, используя протокол Iterator.

В предыдущем разделе мы привели пример группы из 5 мальчиков и вас. Вы итератор, а группа мальчиков – повторяемый элемент. Зная имя одного мальчика, вы задаете тот же вопрос следующему мальчику.

После этого вы делаете это снова. Функция iter() используется для создания итератора повторяемого элемента. А функция next() используется для перехода к следующему элементу.

Пример

Если итератор превысит количество повторяемых элементов, метод next() вызовет исключение StopIteration. Смотрите код ниже для примера:

Создание

Однако вы можете создать свои собственные указанные итераторы в Python. Для этого вам необходимо реализовать класс.

Как мы уже говорили ранее, протокол состоит из двух методов. Итак, нам нужно реализовать этот метод.

Например, вы хотите создать список чисел Фибоначчи, чтобы каждый раз при вызове следующей функции он возвращал вам следующее число.

Чтобы вызвать исключение, мы ограничиваем значение n ниже 10. Если значение n достигнет 10, это вызовет исключение. Код будет таким:

Итак, на выходе будет:

Зачем нужен итератор?

После прохождения предыдущего раздела у вас может возникнуть вопрос, зачем нам нужен Iterator.

Что ж, мы уже видели, что итератор может проходить по итерируемому элементу. Предположим, что в нашем предыдущем примере, если мы составим список чисел Фибоначчи, а затем проходим его через Iterator, это потребует огромной памяти. Но если вы создадите простой класс, вы сможете выполнить свою задачу, не потребляя столько памяти.

Источник

Итерируемый объект, итератор и генератор

Привет, уважаемые читатели Хабрахабра. В этой статье попробуем разобраться что такое итерируемый объект, итератор и генератор. Рассмотрим как они реализованы и используются. Примеры написан на Python, но итераторы и генераторы, на мой взгляд, фундаментальные понятия, которые были актуальны 20 лет назад и еще более актуальны сейчас, при этом за это время фактически не изменились.

что значит генератор в атернос. Смотреть фото что значит генератор в атернос. Смотреть картинку что значит генератор в атернос. Картинка про что значит генератор в атернос. Фото что значит генератор в атернос

Итераторы

Для начала вспомним, что из себя представляет паттерн «Итератор(Iterator)».
Назначение:

Существуют два вида итераторов, внешний и внутренний.
Внешний итератор — это классический (pull-based) итератор, когда процессом обхода явно управляет клиент путем вызова метода Next.
Внутренний итератор — это push-based-итератор, которому передается callback функция, и он сам уведомляет клиента о получении следующего элемента.

Классическая диаграмма паттерна “Итератор”, как она описана в небезызвестной книги «банды четырех»:
что значит генератор в атернос. Смотреть фото что значит генератор в атернос. Смотреть картинку что значит генератор в атернос. Картинка про что значит генератор в атернос. Фото что значит генератор в атернос

Aggregate — составной объект, по которому может перемещаться итератор;
Iterator — определяет интерфейс итератора;
ConcreteAggregate — конкретная реализация агрегата;
ConcreteIterator — конкретная реализация итератора для определенного агрегата;
Client — использует объект Aggregate и итератор для его обхода.

Пробуем реализовать на Python классический итератор

Конкретная реализация итератора для списка:

Конкретная реализация агрегата:

Теперь мы можем создать объект коллекции и обойти все ее элементы с помощью итератора:

А так как мы реализовали метод first, который сбрасывает итератор в начальное состояние, то можно воспользоваться этим же итератором еще раз:

Реализации могут быть разные, но основная идея в том, что итератор может обходить различные структуры, вектора, деревья, хеш-таблицы и много другое, при этом имея снаружи одинаковый интерфейс.

Протокол итерирования в Python

В книге «банды четырех» о реализации итератора написано:

Минимальный интерфейс класса Iterator состоит из операций First, Next, IsDone и CurrentItem. Но если очень хочется, то этот интерфейс можно упростить, объединив операции Next, IsDone и CurrentItem в одну, которая будет переходить к следующему объекту и возвращать его. Если обход завершен, то эта операция вернет специальное значения(например, 0), обозначающее конец итерации.

Именно так и реализовано в Python, но вместо специального значения, о конце итерации говорит StopIteration. Проще просить прощения, чем разрешения.

Сначала важно определиться с терминами.

Рассмотрим итерируемый объект (Iterable). В стандартной библиотеке он объявлен как абстрактный класс collections.abc.Iterable:

У него есть абстрактный метод __iter__ который должен вернуть объект итератора. И метод __subclasshook__ который проверяет наличие у класса метод __iter__. Таким образом, получается, что итерируемый объект это любой объект который реализует метод __iter__

Но есть один момент, это функция iter(). Именно эту функцией использует например цикл for для получения итератора. Функция iter() в первую очередь для получения итератора из объекта, вызывает его метод __iter__. Если метод не реализован, то она проверяет наличие метода __getitem__ и если он реализован, то на его основе создается итератор. __getitem__ должен принимать индекс с нуля. Если не реализован ни один из этих методов, тогда будет вызвано исключение TypeError.

Итого, итерируемый объект — это любой объект, от которого встроенная функция iter() может получить итератор. Последовательности(abc.Sequence) всегда итерируемые, поскольку они реализуют метод __getitem__

Теперь посмотрим, что с итераторами в Python. Они представлены абстрактным классом collections.abc.Iterator:

__next__ Возвращает следующий доступный элемент и вызывает исключение StopIteration, когда элементов не осталось.
__iter__ Возвращает self. Это позволяет использовать итератор там, где ожидается итерируемых объект, например for.
__subclasshook__ Проверяет наличие у класса метода __iter__ и __next__

Итого, итератор в python — это любой объект, реализующий метод __next__ без аргументов, который должен вернуть следующий элемент или ошибку StopIteration. Также он реализует метод __iter__ и поэтому сам является итерируемым объектом.

Таким образом можно реализовать итерируемый объект на основе списка и его итератор:

Функция next() вызывает метод __next__. Ей можно передать второй аргумент который она будет возвращать по окончанию итерации вместо ошибки StopIteration.

Прежде чем переходить к генераторам, рассмотрим еще одну возможность встроенной функции iter(). Ее можно вызывать с двумя аргументами, что позволит создать из вызываемого объекта(функция или класс с реализованным методом __call__) итератор. Первый аргумент должен быть вызываемым объектом, а второй — неким ограничителем. Вызываемый объект вызывается на каждой итерации и итерирование завершается, когда возбуждается исключение StopIteration или возвращается значения ограничителя.

Например, из функции которая произвольно возвращает 1-6, можно сделать итератор, который будет возвращать значения пока не «выпадет» 6:

Небольшой класс ProgrammingLanguages, у которого есть кортеж c языками программирования, конструктор принимает начальное значения индекса по названию языка и функция __call__ которая перебирает кортеж.

Можем перебрать все языки начиная с C# и до последнего:

Генераторы

С точки зрения реализации, генератор в Python — это языковая конструкция, которую можно реализовать двумя способами: как функция с ключевым словом yield или как генераторное выражение. В результате вызова функции или вычисления выражения, получаем объект-генератор типа types.GeneratorType.

В объекте-генераторе определены методы __next__ и __iter__, то есть реализован протокол итератора, с этой точки зрения, в Python любой генератор является итератором.
Концептуально, итератор — это механизм поэлементного обхода данных, а генератор позволяет отложено создавать результат при итерации. Генератор может создавать результат на основе какого то алгоритма или брать элементы из источника данных(коллекция, файлы, сетевое подключения и пр) и изменять их.

Ярким пример являются функции range и enumerate:

range генерирует ограниченную арифметическую прогрессию целых чисел, не используя никакой источник данных.
enumerate генерирует двухэлементные кортежи с индексом и одним элементом из итерируемого объекта.

Yield

Для начало напишем простой генератор не используя объект-генератор. Это генератор чисел Фибоначчи:

Но используя ключевое слово yield можно сильно упростить реализацию:

Любая функция в Python, в теле которой встречается ключевое слово yield, называется генераторной функцией — при вызове она возвращает объект-генератор.
Объект-генератор реализует интерфейс итератора, соответственно с этим объектом можно работать, как с любым другим итерируемым объектом.

Рассмотрим работу yield:

Создается стейт-машина в которой при каждом вызове __next__ меняется состояния и в зависимости от него вызывается тот или иной кусок кода. Если в функции yield в цикле, то соответственно состояние стейт-машины зацикливается пока не будет выполнено условие.

Свой вариант range:

Генераторное выражение (generator expression)

Если кратко, то синтаксически более короткий способ создать генератор, не определяя и не вызывая функцию. А так как это выражение, то у него есть и ряд ограничений. В основном удобно использовать для генерации коллекций, их несложных преобразований и применений на них условий.

В языках программирования есть такие понятия, как ленивые/отложенные вычисления(lazy evaluation) и жадные вычисления(eager/greedy evaluation). Генераторы можно считать отложенным вычислением, в этом смысле списковое включение(list comprehension) очень похожи на генераторное выражение, но являются разными подходами.

Первый вариант работает схожим с нашей функцией cool_range образом и может генерировать без проблем любой диапазон. А вот второй вариант создаст сразу целый список, со всеми вытекающими от сюда проблемами.

Yield from

Для обхода ограниченно вложенных структур, традиционный подход использовать вложенные циклы. Тот же подход можно использовать когда генераторная функция должна отдавать значения, порождаемые другим генератором.

Функция похожая на itertools.chain:

Но вложенные циклы можно убрать, добавив конструкцию yield from:

Основная польза yield from в создании прямого канала между внутренним генератором и клиентом внешнего генератора. Но это уже больше тема про сопрограммы(coroutines), которые заслуживают отдельной статьи. Там же можно обсудить методы генератора: close(), throw() и send().

И в заключении еще один пример. Функция принимающая итерируемый объект, с любым уровнем вложенности другими итерируемыми объектами, и формирующая плоскую последовательность:

Источник

Что значит генератор атернос

Итераторы и генераторы

В чем разница между итератором и генератором? Этот вопрос можно часто услышать на собеседованиях.

Итератор – более общая концепция, чем генератор.

Итератор – это интерфейс доступа к элементам коллекций и потоков данных. Он требует реализации единственного метода – «дай мне следующий элемент». Если вы пишите свой итератор на Python 3 вам нужно реализовать в классе метод __next__. Если элементы исчерпаны итератор возбудит исключение StopIteration.

📎 Пример. Итератор счетчик – выдает числа от low до high:

Генератор – это итератор

Генератор – это итератор, но не наоборот. Не любой итератор является генератором.

Есть два способа получить генератор:

📎 1. Генераторное выражение (что-то типа list comprehension, но возвращает генератор, а не список). Используются круглые скобки:

📎 2. Генераторные функции. Это функции, где есть хотя бы одно выражение yield. Когда мы запускаем генератор, функция выполняет до первого выражения yield. То, что мы передали в yield будет возвращено наружу. Генератор при этом встанет «на паузу» до следующей итерации. При следующей итерации выполнение генератора продолжится до очередного yield.

Генераторы можно прочитать только 1 раз, потому что обычно генераторы не хранят значения в памяти, а генерируют их налету (отсюда и название).

Пример. Генератор чисел Фибоначчи (бесконечный):

Вызвав генераторную функцию fib() мы получили генератор. Затем мы итерируем этот генератор функцией next().

Остановка генератора

Если генератор «закончился» (т.е. просто вышли из функции генератора в конце его кода или по return), то автоматически возбуждается исключение StopIteration. Это не ошибка, это нормально, просто принятый способ обработки конца итератора.

for in сам ловит исключение StopIteration и просто завершает итерировать этот генератор.

Передача данных в генератор

У генераторов есть дополнительные методы, которые позволяют передавать внутрь генератора данные или возбуждать внутри него исключения. Это еще одно отличие от простых итераторов.

send() – отправить данные в генератор. Переданное значение вернется из той конструкции yield, на которой возникла последняя пауза генератора. При этом генератор будет прокручен на один шаг, как если бы мы вызвали next:

Пример. Этот генератор просто выдает числа от 0 и далее, при этом печатает в поток вывода все, что мы ему отправляем.

Обратите внимание, что первый раз нельзя посылать в генератор данные, пока мы не прокрутили его до первого yield. Нужно либо взывать next(g) или g.send(None) – это одно и тоже.

throw() – бросить исключение внутри генератора. Исключение будет возбуждено из того выражение yield, где генератор последний раз остановился.

close() – закрыть генератор. Бросает внутри генератора особое исключение GeneratorExit. Это исключение, даже если оно не обработано, не распространится в код, вызвавший close(). Но, если мы поймали это исключение внутри генератора, то после закрытия генератора нельзя уже делать yield, рискуя получить RuntimeError. Остальные виды исключений будут распространяться из генератора в код, его вызывающий. Попытка итерировать закрытый итератор приведет к исключению StopIteration (закрытый генератор – пустой итератор).

Бонус

Как взять из итератора (в том числе из генератора) N первых значений?

Можно, конечно, написать свою функцию. Но зачем, если она уже есть в стандартном модуле itertools. Этот модуль содержит множество вспомогательных функций для работы с итераторами. Нам понадобится itertools.islice. Первый аргумент – итератор (ну или генератор), остальные три – как в range.

В первом примере мы передаем в функцию itertools.islice наш генератор чисел Фибоначчи и число чисел, которые надо вычислить (в нашем случае – 10).

Мы также применяем функцию list, чтобы посмотреть список значений, потому что itertools.islice возвращает не спикок, а именно новый итератор, в котором будут только интересные нам значений из исходного итератора.

Во втором примеры аргументов 4 штуки. В этом случае второй аргумент – начальный номер = 10, третий – конечный номер = 20 – (не включительно), и четвертый – шаг = 2. (Очень похоже на range, не так ли?)

Итерируемый объект, итератор и генератор

Привет, уважаемые читатели Хабрахабра. В этой статье попробуем разобраться что такое итерируемый объект, итератор и генератор. Рассмотрим как они реализованы и используются. Примеры написан на Python, но итераторы и генераторы, на мой взгляд, фундаментальные понятия, которые были актуальны 20 лет назад и еще более актуальны сейчас, при этом за это время фактически не изменились.

что значит генератор в атернос. Смотреть фото что значит генератор в атернос. Смотреть картинку что значит генератор в атернос. Картинка про что значит генератор в атернос. Фото что значит генератор в атернос

Итераторы

Для начала вспомним, что из себя представляет паттерн «Итератор(Iterator)».
Назначение:

В итоге мы получаем разделение ответственности: клиенты получают возможность работать с разными коллекциями унифицированным образом, а коллекции становятся проще за счет того, что делегируют перебор своих элементам другой сущности.

Существуют два вида итераторов, внешний и внутренний.
Внешний итератор — это классический (pull-based) итератор, когда процессом обхода явно управляет клиент путем вызова метода Next.
Внутренний итератор — это push-based-итератор, которому передается callback функция, и он сам уведомляет клиента о получении следующего элемента.

Классическая диаграмма паттерна “Итератор”, как она описана в небезызвестной книги «банды четырех»:
что значит генератор в атернос. Смотреть фото что значит генератор в атернос. Смотреть картинку что значит генератор в атернос. Картинка про что значит генератор в атернос. Фото что значит генератор в атернос

Aggregate — составной объект, по которому может перемещаться итератор;
Iterator — определяет интерфейс итератора;
ConcreteAggregate — конкретная реализация агрегата;
ConcreteIterator — конкретная реализация итератора для определенного агрегата;
Client — использует объект Aggregate и итератор для его обхода.

Пробуем реализовать на Python классический итератор

Конкретная реализация итератора для списка:

Конкретная реализация агрегата:

Теперь мы можем создать объект коллекции и обойти все ее элементы с помощью итератора:

А так как мы реализовали метод first, который сбрасывает итератор в начальное состояние, то можно воспользоваться этим же итератором еще раз:

Реализации могут быть разные, но основная идея в том, что итератор может обходить различные структуры, вектора, деревья, хеш-таблицы и много другое, при этом имея снаружи одинаковый интерфейс.

Протокол итерирования в Python

В книге «банды четырех» о реализации итератора написано:

Минимальный интерфейс класса Iterator состоит из операций First, Next, IsDone и CurrentItem. Но если очень хочется, то этот интерфейс можно упростить, объединив операции Next, IsDone и CurrentItem в одну, которая будет переходить к следующему объекту и возвращать его. Если обход завершен, то эта операция вернет специальное значения(например, 0), обозначающее конец итерации.

Именно так и реализовано в Python, но вместо специального значения, о конце итерации говорит StopIteration. Проще просить прощения, чем разрешения.

Сначала важно определиться с терминами.

Рассмотрим итерируемый объект (Iterable). В стандартной библиотеке он объявлен как абстрактный класс collections.abc.Iterable:

У него есть абстрактный метод __iter__ который должен вернуть объект итератора. И метод __subclasshook__ который проверяет наличие у класса метод __iter__. Таким образом, получается, что итерируемый объект это любой объект который реализует метод __iter__

Но есть один момент, это функция iter(). Именно эту функцией использует например цикл for для получения итератора. Функция iter() в первую очередь для получения итератора из объекта, вызывает его метод __iter__. Если метод не реализован, то она проверяет наличие метода __getitem__ и если он реализован, то на его основе создается итератор. __getitem__ должен принимать индекс с нуля. Если не реализован ни один из этих методов, тогда будет вызвано исключение TypeError.

Итого, итерируемый объект — это любой объект, от которого встроенная функция iter() может получить итератор. Последовательности(abc.Sequence) всегда итерируемые, поскольку они реализуют метод __getitem__

Теперь посмотрим, что с итераторами в Python. Они представлены абстрактным классом collections.abc.Iterator:

__next__ Возвращает следующий доступный элемент и вызывает исключение StopIteration, когда элементов не осталось.
__iter__ Возвращает self. Это позволяет использовать итератор там, где ожидается итерируемых объект, например for.
__subclasshook__ Проверяет наличие у класса метода __iter__ и __next__

Итого, итератор в python — это любой объект, реализующий метод __next__ без аргументов, который должен вернуть следующий элемент или ошибку StopIteration. Также он реализует метод __iter__ и поэтому сам является итерируемым объектом.

Таким образом можно реализовать итерируемый объект на основе списка и его итератор:

Функция next() вызывает метод __next__. Ей можно передать второй аргумент который она будет возвращать по окончанию итерации вместо ошибки StopIteration.

Прежде чем переходить к генераторам, рассмотрим еще одну возможность встроенной функции iter(). Ее можно вызывать с двумя аргументами, что позволит создать из вызываемого объекта(функция или класс с реализованным методом __call__) итератор. Первый аргумент должен быть вызываемым объектом, а второй — неким ограничителем. Вызываемый объект вызывается на каждой итерации и итерирование завершается, когда возбуждается исключение StopIteration или возвращается значения ограничителя.

Например, из функции которая произвольно возвращает 1-6, можно сделать итератор, который будет возвращать значения пока не «выпадет» 6:

Небольшой класс ProgrammingLanguages, у которого есть кортеж c языками программирования, конструктор принимает начальное значения индекса по названию языка и функция __call__ которая перебирает кортеж.

Можем перебрать все языки начиная с C# и до последнего:

Генераторы

С точки зрения реализации, генератор в Python — это языковая конструкция, которую можно реализовать двумя способами: как функция с ключевым словом yield или как генераторное выражение. В результате вызова функции или вычисления выражения, получаем объект-генератор типа types.GeneratorType.

В объекте-генераторе определены методы __next__ и __iter__, то есть реализован протокол итератора, с этой точки зрения, в Python любой генератор является итератором.
Концептуально, итератор — это механизм поэлементного обхода данных, а генератор позволяет отложено создавать результат при итерации. Генератор может создавать результат на основе какого то алгоритма или брать элементы из источника данных(коллекция, файлы, сетевое подключения и пр) и изменять их.

Ярким пример являются функции range и enumerate:

range генерирует ограниченную арифметическую прогрессию целых чисел, не используя никакой источник данных.
enumerate генерирует двухэлементные кортежи с индексом и одним элементом из итерируемого объекта.

Yield

Для начало напишем простой генератор не используя объект-генератор. Это генератор чисел Фибоначчи:

Но используя ключевое слово yield можно сильно упростить реализацию:

Любая функция в Python, в теле которой встречается ключевое слово yield, называется генераторной функцией — при вызове она возвращает объект-генератор.
Объект-генератор реализует интерфейс итератора, соответственно с этим объектом можно работать, как с любым другим итерируемым объектом.

Происходит приблизительно следующее. Генераторная функция разбивается на части:

Создается стейт-машина в которой при каждом вызове __next__ меняется состояния и в зависимости от него вызывается тот или иной кусок кода. Если в функции yield в цикле, то соответственно состояние стейт-машины зацикливается пока не будет выполнено условие.

Генераторное выражение (generator expression)

Если кратко, то синтаксически более короткий способ создать генератор, не определяя и не вызывая функцию. А так как это выражение, то у него есть и ряд ограничений. В основном удобно использовать для генерации коллекций, их несложных преобразований и применений на них условий.

В языках программирования есть такие понятия, как ленивые/отложенные вычисления(lazy evaluation) и жадные вычисления(eager/greedy evaluation). Генераторы можно считать отложенным вычислением, в этом смысле списковое включение(list comprehension) очень похожи на генераторное выражение, но являются разными подходами.

Первый вариант работает схожим с нашей функцией cool_range образом и может генерировать без проблем любой диапазон. А вот второй вариант создаст сразу целый список, со всеми вытекающими от сюда проблемами.

Yield from

Для обхода ограниченно вложенных структур, традиционный подход использовать вложенные циклы. Тот же подход можно использовать когда генераторная функция должна отдавать значения, порождаемые другим генератором.

Функция похожая на itertools.chain:

Но вложенные циклы можно убрать, добавив конструкцию yield from:

Основная польза yield from в создании прямого канала между внутренним генератором и клиентом внешнего генератора. Но это уже больше тема про сопрограммы(coroutines), которые заслуживают отдельной статьи. Там же можно обсудить методы генератора: close(), throw() и send().

И в заключении еще один пример. Функция принимающая итерируемый объект, с любым уровнем вложенности другими итерируемыми объектами, и формирующая плоскую последовательность:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *