о чем говорит отрицательная корреляция
Отрицательная корреляция
Одна переменная растет, другая падает
Что такое отрицательная корреляция?
Отрицательная корреляция — это взаимосвязь между двумя переменными, которые движутся в противоположных направлениях. Другими словами, когда переменная A увеличивается, переменная B уменьшается. Отрицательная корреляция также известна как обратная корреляция.
Примеры отрицательной, положительной и низкой корреляции
Теперь давайте посмотрим на график с идеальной положительной корреляцией. На графике ниже вы можете видеть, что если Акция Y выросла на 1,0%, Акция X выросла на 1,6%.
Наконец, давайте рассмотрим другой пример, на этот раз двух низко коррелированных активов. Как видите, точки сильно разбросаны, и ни одна из них не лежит на линии наилучшего соответствия. Для этих двух акций практически нет корреляции между доходностью Акции Y и доходностью Акции X. Эти две ценные бумаги движутся совершенно независимо друг от друга.
Преимущества отрицательно коррелированных активов в портфелях
Концепция отрицательной корреляции важна для инвесторов или аналитиков, которые рассматривают возможность добавления новых инвестиций в свой портфель. Когда рыночная неопределенность высока, общим соображением является перебалансировка портфелей путем замены некоторых ценных бумаг, имеющих положительную корреляцию, на те, которые имеют отрицательную корреляцию.
Движение портфеля компенсирует друг друга, снижая риск, а также доходность. После того, как неопределенность на рынке уменьшится, инвесторы могут начать закрывать офсетные позиции. Примером отрицательно коррелированных ценных бумаг может быть опцион на акции и пут на акции, стоимость которых растет по мере падения цены акции.
Отрицательный коэффициент
Примеры активов с отрицательной корреляцией
Вот несколько распространенных примеров отрицательной корреляции между активами:
Дополнительные ресурсы:
Спасибо за то, что прочитали руководство Finansistem по обратно пропорциональным активам в инвестициях и финансах. Чтобы продолжить обучение, Finansistem настоятельно рекомендует:
Корреляции в дипломных работах по психологии
Термин «корреляция» активно используется в гуманитарных науках, медицине; часто мелькает в СМИ. Ключевую роль корреляции играют в психологии. В частности, расчет корреляций выступает важным этапом реализации эмпирического исследования при написании ВКР по психологии.
В этой статье мы простым языком объясним суть корреляционной связи, виды корреляций, способы расчета, особенности использования корреляции в психологических исследованиях, а также при написании дипломных работ по психологии.
Что такое корреляция
Корреляция – это связь. Но не любая. В чем же ее особенность? Рассмотрим на примере.
Представьте, что вы едете на автомобиле. Вы нажимаете педаль газа – машина едет быстрее. Вы сбавляете газ – авто замедляет ход. Даже не знакомый с устройством автомобиля человек скажет: «Между педалью газа и скоростью машины есть прямая связь: чем сильнее нажата педаль, тем скорость выше».
Это зависимость функциональная – скорость выступает прямой функцией педали газа. Специалист объяснит, что педаль управляет подачей топлива в цилиндры, где происходит сжигание смеси, что ведет к повышению мощности на вал и т.д. Это связь жесткая, детерминированная, не допускающая исключений (при условии, что машина исправна).
Теперь представьте, что вы директор фирмы, сотрудники которой продают товары. Вы решаете повысить продажи за счет повышения окладов работников. Вы повышаете зарплату на 10%, и продажи в среднем по фирме растут. Через время повышаете еще на 10%, и опять рост. Затем еще на 5%, и опять есть эффект. Напрашивается вывод – между продажами фирмы и окладом сотрудников есть прямая зависимость – чем выше оклады, тем выше продажи организации. Такая же это связь, как между педалью газа и скоростью авто? В чем ключевое отличие?
Правильно, между окладом и продажами заисимость не жесткая. Это значит, что у кого-то из сотрудников продажи могли даже снизиться, невзирая на рост оклада. У кого-то остаться неизменными. Но в среднем по фирме продажи выросли, и мы говорим – связь продаж и оклада сотрудников есть, и она корреляционная.
В основе функциональной связи (педаль газа – скорость) лежит физический закон. В основе корреляционной связи (продажи – оклад) находится простая согласованность изменения двух показателей. Никакого закона (в физическом понимании этого слова) за корреляцией нет. Есть лишь вероятностная (стохастическая) закономерность.
Численное выражение корреляционной зависимости
Итак, корреляционная связь отражает зависимость между явлениями. Если эти явления можно измерить, то она получает численное выражение.
Полученное число называется коэффициентом корреляции. Для его правильной интерпретации важно учитывать следующее:
Прямая и обратная
Сильная и слабая
Чем ниже численное значение коэффициента, тем взаимосвязь между явлениями и показателями меньше.
Рассмотрим пример. Взяли 10 студентов и измерили у них уровень интеллекта (IQ) и успеваемость за семестр. Расположили эти данные в виде двух столбцов.
Испытуемый
Успеваемость (баллы)
Посмотрите внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. Но также растет и уровень успеваемости. Из любых двух студентов успеваемость будет выше у того, у кого выше IQ. И никаких исключений из этого правила не будет.
Перед нами пример полного, 100%-но согласованного изменения двух показателей в группе. И это пример максимально возможной положительной взаимосвязи. То есть, корреляционная зависимость между интеллектом и успеваемостью равна 1.
Рассмотрим другой пример. У этих же 10-ти студентов с помощью опроса оценили, в какой мере они ощущают себя успешными в общении с противоположным полом (по шкале от 1 до 10).
Испытуемый
Успех в общении с противоположным полом (баллы)
Смотрим внимательно на данные в таблице. От 1 до 10 испытуемого растет уровень IQ. При этом в последнем столбце последовательно снижается уровень успешности общения с противоположным полом. Из любых двух студентов успех общения с противоположным полом будет выше у того, у кого IQ ниже. И никаких исключений из этого правила не будет.
А как понять смысл корреляции равной нулю (0)? Это значит, связи между показателями нет. Еще раз вернемся к нашим студентам и рассмотрим еще один измеренный у них показатель – длину прыжка с места.
Испытуемый
Длина прыжка с места (м)
Не наблюдается никакой согласованности между изменением IQ от человека к человеку и длинной прыжка. Это и свидетельствует об отсутствии корреляции. Коэффициент корреляции IQ и длины прыжка с места у студентов равен 0.
Мы рассмотрели крайние случаи. В реальных измерениях коэффициенты редко бывают равны точно 1 или 0. При этом принята следующая шкала:
Приведенная градация дает очень приблизительные оценки и в таком виде редко используются в исследованиях.
Чаще используются градации коэффициентов по уровням значимости. В этом случае реально полученный коэффициент может быть значимым или не значимым. Определить это можно, сравнив его значение с критическим значением коэффициента корреляции, взятым из специальной таблицы. Причем эти критические значения зависят от численности выборки (чем больше объем, тем ниже критическое значение).
Корреляционный анализ в психологии
Корреляционный метод выступает одним из основных в психологических исследованиях. И это не случайно, ведь психология стремится быть точной наукой. Получается ли?
В чем особенность законов в точных науках. Например, закон тяготения в физике действует без исключений: чем больше масса тела, тем сильнее оно притягивает другие тела. Этот физический закон отражает связь массы тела и силы притяжения.
Пример исследования на студентах из предыдущего раздела хорошо иллюстрирует использование корреляций в психологии:
Вот как могли выглядеть краткие выводы по результатам придуманного исследования на студентах:
Таким образом, уровень интеллекта студентов выступает позитивным фактором их академической успеваемости, в то же время негативно сказываясь на отношениях с противоположным полом и не оказывая значимого влияния на спортивные успехи, в частности, способность к прыгать с места.
Как видим, интеллект помогает студентам учиться, но мешает строить отношения с противоположным полом. При этом не влияет на их спортивные успехи.
Неоднозначное влияние интеллекта на личность и деятельность студентов отражает сложность этого феномена в структуре личностных особенностей и важность продолжения исследований в этом направлении. В частности, представляется важным провести анализ взаимосвязей интеллекта с психологическими особенностями и деятельностью студентов с учетом их пола.
Коэффициенты Пирсона и Спирмена
Рассмотрим два метода расчета.
Коэффициент Пирсона – это особый метод расчета взаимосвязи показателей между выраженностью численных значений в одной группе. Очень упрощенно он сводится к следующему:
Коэффициент ранговой корреляции Спирмена рассчитывается похожим образом:
В случае Пирсона расчет шел с использованием среднего значения. Следовательно, случайные выбросы данных (существенное отличие от среднего), например, из-за ошибки обработки или недостоверных ответов могут существенно исказить результат.
В случае Спирмена абсолютные значения данных не играют роли, так как учитывается только их взаимное расположение по отношению друг к другу (ранги). То есть, выбросы данных или другие неточности не окажут серьезного влияния на конечный результат.
Если результаты тестирования корректны, то различия коэффициентов Пирсона и Спирмена незначительны, при этом коэффициент Пирсона показывает более точное значение взаимосвязи данных.
Как рассчитать коэффициент корреляции
Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.
Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.
Расчет с помощью электронных таблиц Microsoft Excel
Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.
Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».
Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.
В таблицах Excel реализована формула расчета только коэффициента Пирсона.
Расчет с помощью программы STATISTICA
Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.
Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону – 0,038, полученной выше с помощью Excel. Однако различия незначительны.
Использование корреляционного анализа в дипломных работах по психологии (пример)
Большинство тем выпускных квалификационных работ по психологии (дипломов, курсовых, магистерских) предполагают проведение корреляционного исследования (остальные связаны с выявлением различий психологических показателей в разных группах).
Сам термин «корреляция» в названиях тем звучит редко – он скрывается за следующими формулировками:
Рассмотрим кратко этапы его проведения при написании дипломной работы по психологии на тему: «Взаимосвязь личностной тревожности и агрессивности у подростков».
1. Для расчета необходимы сырые данные, в качестве которых обычно выступают результаты тестирования испытуемых. Они заносятся в сводную таблицу и помещаются в приложение. Эта таблица устроена следующим образом:
Корреляция и коэффициент корреляции
Корреляция — степень связи между 2-мя или несколькими независимыми явлениями.
Корреляция бывает положительной и отрицательной.
Положительная корреляция (прямая) возникает при одновременном изменении 2-х переменных величин в одинаковых направлениях (в положительном или отрицательном). Например, взаимосвязь между количеством пользователей, приходящих на сайт из поисковой выдачи и нагрузкой на сервер: чем больше пользователей, тем больше нагрузка.
Корреляция отрицательна (обратная), если изменение одной величины приводит противоположному изменению другой. Например, с увеличением налоговой нагрузки на компании уменьшается их прибыль. Чем больше налогов, тем меньше денег на развитие.
Типичные виды корреляции
Эффективность корреляции как статистического инструмента заключается в возможности выражения связи между двумя переменными при помощи коэффициента корреляции.
При значении КК равным 1, следует понимать, что при каждом изменении 1-й переменной происходит эквивалентное изменение 2-й переменной в том же направлении.
Положительная корреляция концентраций этанола в синовии и крови
Отрицательная корреляция между показателями результатов в беге на 100 м с барьерами и прыжками в длину
Значение | Интерпретация |
до 0,2 | Очень слабая |
до 0,5 | Слабая |
до 0,7 | Средняя |
до 0,9 | Высокая |
свыше 0,9 | Очень высокая корреляция |
Данный метод обработки статистической информации популярен в экономических, технических, социальных и других науках в виду простоты подсчета КК, простотой интерпретации результатов и отсутствия необходимости владения математикой на высоком уровне.
Корреляционная зависимость отражает только взаимосвязь между переменными и не говорит о причинно-следственных связях: положительная или отрицательная корреляция между 2-мя переменными не обязательно означает, что изменение одной переменной вызывает изменение другой.
Например, есть положительная корреляция между увеличением зарплаты менеджеров по продажам и качеством работы с клиентами (повышения качества обслуживания, работа с возражениями, знание положительных качеств продукта в сравнении с конкурентами) при соответствующей мотивации персонала. Увеличившийся объем продаж, а следовательно и зарплата менеджеров, вовсе не означает что менеджеры улучшили качество работы с клиентами. Вполне вероятно, что случайно поступили крупные заказы и были отгружены или отдел маркетинга увеличил рекламный бюджет или произошло еще что-то.
Возможно существует некая третья переменная, влияющая на причину наличия или отсутствия корреляции.
Коэффициент корреляции не рассчитывается:
Корреляция, корреляционная зависимость
Корреляция (от лат. correlatio), корреляционная зависимость — взаимозависимость двух или нескольких случайных величин. Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой(-их) переменной(-ых).
При расчете корреляций пытаются определить, существует ли статистически достоверная связь между двумя или несколькими переменными в одной или нескольких выборках. Например, взаимосвязь между ростом и весом детей, взаимосвязь между успеваемостью и результатами выполнения теста IQ, между стажем работы и производительностью труда.
Важно понимать, что корреляционная зависимость отражает только взаимосвязь между переменными и не говорит о причинно-следственных связях. Например, если бы исследуемой выборке между ростом и весом человека существовала корреляционная зависимость то, это не значило бы, что вес является причиной роста человека, иначе сбрасывая лишние килограммы рост человека также уменьшался. Корреляционная связь лишь говорит о взаимосвязанности данных параметров, причем в данной конкретной выборке, в другой выборке мы можем не наблюдать полученные корреляции.
При положительной корреляции увеличение (или уменьшение) значений одной переменной ведет к закономерному увеличению (или уменьшению) другой переменной т.е. взаимосвязи типа увеличение-увеличение (уменьшение-уменьшение).
При отрицательной корреляции увеличение (или уменьшение) значений одной переменной ведет к закономерному уменьшению (или увеличению) другой переменной т.е. взаимосвязи типа увеличение-уменьшение (уменьшение-увеличение).
Корреляция (синонимы): соотношение, соотнесение, взаимосвязь, взаимозависимость, взаимообусловленность, взаимосоответствие.
Отрицательная корреляция
Опубликовано 27.06.2021 · Обновлено 27.06.2021
Что такое Отрицательная корреляция?
Понимание отрицательной корреляции
Коэффициент корреляции (обычно обозначаемый буквами «r» или «R») можно определить с помощью регрессионного анализа. Квадрат коэффициента корреляции (обычно обозначаемый «R 2 » или R-квадрат ) представляет степень или степень, в которой дисперсия одной переменной связана с дисперсией второй переменной и обычно выражается в процентах. Например, если у портфеля и его эталона корреляция 0,9, значение R-квадрата будет 0,81. Интерпретация этого рисунка состоит в том, что 81% вариации портфеля (в данном случае зависимая переменная) связана с вариацией эталона (независимая переменная) или может быть объяснена ею.
Ключевые моменты
Важность отрицательной корреляции
Концепция отрицательной корреляции является ключевой при построении портфеля. Отрицательная корреляция между секторами или географическими регионами позволяет создавать диверсифицированные портфели, которые могут лучше противостоять волатильности рынка и сглаживать доходность портфеля в долгосрочной перспективе.
Рассмотрим долгосрочную отрицательную корреляцию между акциями и облигациями. Акции обычно превосходят облигации в периоды высоких экономических показателей, но по мере того, как экономика замедляется, а центральный банк снижает процентные ставки для стимулирования экономики, облигации могут превзойти акции.
Примеры отрицательной корреляции
Примеры отрицательной корреляции распространены в инвестиционном мире. Хорошо известный пример – отрицательная корреляция между ценами на сырую нефть и ценами на акции авиакомпаний. Топливо для реактивных двигателей, которое получают из сырой нефти, требует значительных затрат для авиакомпаний и оказывает значительное влияние на их прибыльность и прибыль. Если цена на сырую нефть вырастет, это может отрицательно сказаться на прибыли авиакомпаний и, следовательно, на цене их акций. Но если цена на сырую нефть снизится, это должно увеличить прибыль авиакомпаний и, следовательно, их стоимость акций.
Вот как существование этого явления может помочь в построении диверсифицированного портфеля.Поскольку энергетический сектор имеет значительный вес в большинстве фондовых индексов (энергетика составляет лишь около 2% от S&P 500, но, например, составляет около 10,6% от канадского индекса TSX Composite), многие инвесторы в значительной степени зависят от цен на сырую нефть, которые обычно довольно летучие.12 Поскольку энергетический сектор – по очевидным причинам – имеет положительную корреляцию с ценами на сырую нефть, вложение части своего портфеля в акции авиакомпаний обеспечит хеджирование от падения цен на нефть.
Следует отметить, что этот инвестиционный тезис может работать не всегда, поскольку типичная отрицательная корреляция между ценами на нефть и акциями авиакомпаний может иногда становиться положительной. Например, во время экономического бума цены на нефть и акции авиакомпаний могут расти; и наоборот, во время рецессии цены на нефть и акции авиакомпаний могут снижаться одновременно.
Когда отрицательная корреляция между двумя переменными нарушается, это может нанести ущерб инвестиционным портфелям. Например, в четвертом квартале 2018 года фондовые рынки США продемонстрировали худшие показатели за десятилетие, отчасти вызванные опасениями, что Федеральная резервная система продолжит повышать процентные ставки. Опасения по поводу повышения процентных ставок также сказались на облигациях, которые упали вместе с акциями, поскольку нормальная отрицательная корреляция между акциями и облигациями упала до самого низкого уровня за последние два десятилетия. В такие моменты инвесторы часто к своему огорчению обнаруживают, что им негде спрятаться.