о чем говорит закон об оптимальном экологическом факторе

Закон оптимума, закон минимума Либиха, закон лимитирующих факторов Шелфорда.

о чем говорит закон об оптимальном экологическом факторе. Смотреть фото о чем говорит закон об оптимальном экологическом факторе. Смотреть картинку о чем говорит закон об оптимальном экологическом факторе. Картинка про о чем говорит закон об оптимальном экологическом факторе. Фото о чем говорит закон об оптимальном экологическом факторе о чем говорит закон об оптимальном экологическом факторе. Смотреть фото о чем говорит закон об оптимальном экологическом факторе. Смотреть картинку о чем говорит закон об оптимальном экологическом факторе. Картинка про о чем говорит закон об оптимальном экологическом факторе. Фото о чем говорит закон об оптимальном экологическом факторе о чем говорит закон об оптимальном экологическом факторе. Смотреть фото о чем говорит закон об оптимальном экологическом факторе. Смотреть картинку о чем говорит закон об оптимальном экологическом факторе. Картинка про о чем говорит закон об оптимальном экологическом факторе. Фото о чем говорит закон об оптимальном экологическом факторе о чем говорит закон об оптимальном экологическом факторе. Смотреть фото о чем говорит закон об оптимальном экологическом факторе. Смотреть картинку о чем говорит закон об оптимальном экологическом факторе. Картинка про о чем говорит закон об оптимальном экологическом факторе. Фото о чем говорит закон об оптимальном экологическом факторе

о чем говорит закон об оптимальном экологическом факторе. Смотреть фото о чем говорит закон об оптимальном экологическом факторе. Смотреть картинку о чем говорит закон об оптимальном экологическом факторе. Картинка про о чем говорит закон об оптимальном экологическом факторе. Фото о чем говорит закон об оптимальном экологическом факторе

о чем говорит закон об оптимальном экологическом факторе. Смотреть фото о чем говорит закон об оптимальном экологическом факторе. Смотреть картинку о чем говорит закон об оптимальном экологическом факторе. Картинка про о чем говорит закон об оптимальном экологическом факторе. Фото о чем говорит закон об оптимальном экологическом факторе

В комплексе действия факторов можно выделить некоторые закономерности, которые являются по отношению к организмам в значительной мере универсальным (общими). К таким закономерностям относятся закон оптимума, закон взаимодействия факторов, закон лимитирующих факторов и некоторые другие.

К зоне оптимума обычно приурочена максимальное количество видов и плотность популяции. Зоны оптимума для различных организмов неодинаковые. Для одних они имеют значительный диапазон.

Закон минимума Либиха. Любому живому организму необходимы не вообще температура, влажность, минеральные и органические вещества или какие-нибудь другие факторы, а их определенный режим. Реакция организма зависит от количества (дозы) фактора. Кроме того, живой организм в природных условиях подвергается воздействию многих экологических факторов (как абиотических, так и биотических) одновременно. Растения нуждаются в значительных количествах влаги и питательных веществ (азот, фосфор, калий) и одновременно в относительно «ничтожных» количествах таких элементов, как бор и молибден. Любой вид животного или растения обладает четкой избирательностью к составу пищи: каждому растению необходимы определенные минеральные элементы. Любой вид животного по-своему требователен к качеству пищи. Для того чтобы нормально существовать, развиваться, организм должен иметь весь набор необходимых факторов в оптимальных режимах и достаточных количествах. Тот факт, что ограничение дозы (или отсутствие) любого из необходимых растению веществ, относящихся как к макро-, так и к микроэлементам, ведет к одинаковому результату — замедлению роста, обнаружен и изучен одним из основоположников агрохимии немецким химиком Юстасом фон Либихом. Сформулированное им в 1840 г. правило называют законом минимума Либиха: величина урожая определяется количеством в почве того из элементов питания, потребность растения в ко­тором удовлетворена меньше всего. Закон минимума Либиха в настоящее время называется законом ограничивающего лимитирующего фактора: в комплексе экологических факторов сильнее действует тот, который наиболее близок к пределу выносливости.

Закон минимума справедлив как для растений, так и для животных, включая человека, которому в определенных ситуациях приходится употреблять минеральную воду или витамины для компенсации недостатка каких-либо элементов в организме.

Закон лимитирующих факторов Шелфорда. Фактор среды ощущается организмом не только при его недостатке. Проблемы возникают также и при избытке любого из экологических факторов. Например, жизненная активность организма заметно угнетается и при малых значениях и при чрезмерном воздействии такого абиотического фактора, как температура.

о чем говорит закон об оптимальном экологическом факторе. Смотреть фото о чем говорит закон об оптимальном экологическом факторе. Смотреть картинку о чем говорит закон об оптимальном экологическом факторе. Картинка про о чем говорит закон об оптимальном экологическом факторе. Фото о чем говорит закон об оптимальном экологическом факторе

Впервые предположение о лимитирующем (ограничивающем) влиянии максимального значения фактора наравне с минимальным значением было высказано в 1913 г. американским зоологом В. Шелфордом, установившим фундаментальный биологический закон толерантности: любой живой организм имеет определенные, эволюционно унаследованные верхний и нижний пределы устойчивости (толерантности) к любому экологическому фактору. Другими словами лимитирующим фактором процветания может быть как минимум, так и максимум экологического фактора, диапазон между которыми определяет величну толерантности, выносливости организма к данному фактору. Поэтому экологический фактор, уровень которого приближается к любой границе диапазона выносливости организма или заходит за эту границу, называют лимитирующим фактором. Например, виды, длительное время развивается в относительно стабильных условиях утрачивают экологическую пластичность и вырабатывают черты стенобиотности, в то время как виды существующие при значительных колебаних, факторов среды, приобретают повышенную экологическую пластичность и становятся эврибионтными.

Другая формулировка закона В. Шелфорда поясняет, почему закон толерантности одновременно называют законом лимитирующих факторов: закон толерантности дополняют положения американского эколога Ю. Одума:

— организмы могут иметь широкий диапазон толерантности в отношении одного экологического фактора и низкий диапазон в отношении другого;

— организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены;

— диапазон толерантности может сузиться и в отношении других экологических факторов, если условия по одному экологическому фактору не оптимальны для организма;

Источник

Закон оптимума

Результаты действия переменного фактора зависят, прежде всего, от силы его проявления, или дозировки. Факторы положительно влияют на организмы лишь в определенных пределах. Недостаточное либо избыточное их действие сказывается на организмах отрицательно.

Зона оптимума — это тот диапазон действия фактора, который наиболее благоприятен для жизнедеятельности. Отклонения от оптимума определяют зоны пессимума. В них организмы испытывают угнетение.

Минимально и максимально переносимые значения фактора — это критические точки, за которыми организм гибнет. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организма данного вида. Чем сильнее отклонение от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума).

Закон оптимума универсален. Он определяет границы условий, в которых возможно существование видов, а также меру изменчивости этих условий. Виды чрезвычайно разнообразны по способности переносить изменения факторов. В природе выделяются два крайних варианта — узкая специализация и широкая выносливость. У специализированных видов критические точки значения фактора сильно сближены, такие виды могут жить только в относительно постоянных условиях. Так, многие глубоководные обитатели — рыбы, иглокожие, ракообразные — не переносят колебания температуры даже в пределах 2-3 °C. Растения влажных местообитаний (калужница болотная, недотрога и др.) моментально вянут, если воздух вокруг них не насыщен водяными парами. Виды с узким диапазоном выносливости называют стенобионтами, а с широким — эврибионтами. Если нужно подчеркнуть отношение к какому-либо фактору, используют сочетания «стено-» и «эври-» применительно к его названию, например, стенотермный вид — не переносящий колебания температур, эвригалинный — способный жить при широких колебаниях солености воды и т. п.

Связанные понятия

Ограничивающие факторы — экологические факторы, при выходе которых за границы максимума или минимума организму или популяции грозит гибель. Это происходит несмотря на другие факторы, которые могут быть благоприятными. Самым жестким ограничивающим фактором считается вода.

Экосистема озера включает биотические (живые) растения, животных и микроорганизмы, а также абиотические (неживые) физические и химические взаимодействия.Озерные экосистемы являются яркими примерами стоячих экосистем. К стоячим относятся застойные или слаботекущие воды (от латинского Lentus-вялый). Стоячие воды колеблются от прудов, озер до водно-болотных угодий, и большая часть этой статьи относится к стоячим экосистемам в целом. Стоячие экосистемы можно сравнить с текучими экосистемами, в которые.

Предельная нагрузка биологического вида на среду обитания (ёмкость среды) — максимальный размер популяции вида, который среда может безусловно стабильно поддерживать, обеспечивать пищей, укрытием, водой и другими необходимыми благами.

Источник

Законы оптимума, минимума и максимума

У всякого экологического фактора существуют определенные границы в его положительном воздействии на живой организм. В этом состоит закон оптимума. С другой стороны, существуют законы минимума и максимума.

Закон минимума (закон ограничивающего фактора), или закон Либиха

Разработан в 1840 году немецким химиком Юстусом фон Либихом. Гласит, что самое большое воздействие на организм оказывает такой фактор, количество и качество которого дальше всего отклонилось от оптимального значения (иначе говоря, близится к тому минимуму, который вообще может пережить организм).

Поясним. Ограничивающие (лимитирующие) факторы оказывают на развитие организма сдерживающее влияние — в случае их избытка или недостатка в сравнении с потребностями организма. Например, на участке почвы с избытком фосфора и азота, но малым содержанием калия, растение сможет расти только до тех пор, пока весь калий не будет усвоен. Недостаток калия — это слабое звено.

Закон минимума Либиха не работает, если имеются факторы взаимозаменяемые. В этом случае рост одного фактора просто компенсирует дефицит другого. Человеку проще перенести сильную жару, если воздух сухой. Он промерзнет быстрее при сильном ветре, чем в тихую погоду при таком же морозе. Если организм получает достаточное количество пищи, он легче переносит избыток или недостаток других факторов (низкую температуру воздуха, тяжелую работу и др.).

Закон Либиха был в 1913 году дополнен американским зоологом Виктором Шелфордом — лимитирующим фактором может быть как минимум, так и максимум экологического фактора. В этом состоит закон максимума.

Источник

Экологический оптимум

Под экологическим оптимумом принято понимать количество экологического фактора, позволяющего вывести интенсивность жизнедеятельности организмов на максимальный уровень. Эта величина находится в тесной связи с сезоном, возрастом живых существ и их половой принадлежности.

Что такое экологический оптимум

С экологическим оптимумом тесно связаны такие категории, как:

Экологический оптимум, максимум и минимум различны и определяются и рассчитываются для каждого организма индивидуально. о чем говорит закон об оптимальном экологическом факторе. Смотреть фото о чем говорит закон об оптимальном экологическом факторе. Смотреть картинку о чем говорит закон об оптимальном экологическом факторе. Картинка про о чем говорит закон об оптимальном экологическом факторе. Фото о чем говорит закон об оптимальном экологическом факторе

Закон экологического оптимума

Закон экологического оптимума можно сформулировать следующим образом: каждый экологический фактор оказывает на организм положительное влияние до тех пор, пока он остается в рамках, ограниченных критическими точками. При выходе за эти границы влияние становится негативным: причем, как в большую, так и меньшую сторону.

В зависимости от выраженности способности приспосабливаться к изменениям условиям среды выделяются организмы-стенобионты (с узкой специализацией) и эврибионты (с широкой специализацией).

Первые отличаются высокой чувствительностью к изменениям среды; критические точки факторов для них очень близки. Они способны выживать только в относительно спокойной, стабильной среде. Минимальные перепады температуры, уменьшение или увеличения солености воды и т.д. становятся для них губительны. Область толерантности эврибионтов значительно шире. Они легче приспосабливаются к условиям среды и обладают лучшей выживаемостью.

Какие условия включаются в понятие экологический оптимум

Для того чтобы рассчитать экологический оптимум для того или иного вида нужно знать критические точки, применимые для рассматриваемого биологического вида. А также учитывать силу проявления фактора и время его воздействия.

Разница между показателями выражает экологический оптимум для вида.

Источник

Законы определяющие действие экологического фактора: закон оптимума, закон относительности, закон абсолютной незаменимости

1. Закон относительности действия экологического фактора: направление и интенсивность действия экологического фактора зависят от того, в каких количествах он берется и в сочетании с какими другими факторами действует. Не бывает абсолютно полезных или вредных экологических факторов: все дело в количестве. При этом экологические факторы нельзя рассматривать в отрыве друг от друга. Например, если организм испытывает дефицит воды, ему труднее переносить высокую температуру.

2. Закон относительной заменяемости и абсолютной незаменяемости экологических факторов: абсолютное отсутствие какого-либо из обязательных факторов условий жизни заменить другими экологическими факторами невозможно, но недостаток или избыток одних экологических факторов может быть возмещен действием других. Например, полное отсутствие воды нельзя компенсировать другими экологическими факторами. Однако если другие экологические факторы находятся в оптимуме, то перенести недостаток воды легче, чем когда другие факторы находятся в недостатке или избытке.

3. Закон оптимума (в экологии) — любой экологический фактор имеет определённые пределы положительного влияния на живые организмы.

Результаты действия переменного фактора зависят прежде всего от силы его проявления, или дозировки. Факторы положительно влияют на организмы лишь в определенных пределах. Недостаточное либо избыточное их действие сказывается на организмах отрицательно.

Зона оптимума — это тот диапазон действия фактора, который наиболее благоприятен для жизнедеятельности. Отклонения от оптимума определяют зоны пессимума. В них организмы испытывают угнетение. Минимально и максимально переносимые значения фактора — это критические точки, за которыми организм гибнет. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организма данного вида. Чем сильнее отклонение от оптимума, тем больше выражено угнетающее действие данного фактора на организмы(зона пессимума).Закон оптимума универсален. Он определяет границы условий, в которых возможно существование видов, а также меру изменчивости этих условий. Виды чрезвычайно разнообразны по способности переносить изменения факторов. В природе выделяются два крайних варианта — узкая специализация и широкая выносливость. У специализированных видов критические точки значения фактора сильно сближены, такие виды могут жить только в относительно постоянных условиях. Так, многие глубоководные обитатели — рыбы, иглокожие, ракообразные — не переносят колебания температуры даже в пределах 2-3 °C. Растения влажных местообитаний (калужница болотная, недотрога и др.) моментально вянут, если воздух вокруг них не насыщен водяными парами. Виды с узким диапазоном выносливости называют стенобионтами, а с широким — эврибионтами. Если нужно подчеркнуть отношение к какому-либо фактору, используют сочетания «стено-» и «эври-» применительно к его названию, например, стенотермный вид — не переносящий колебания температур, эвригалинный — способный жить при широких колебаниях солености воды и т. п.

Популяция – качественный этап биологических систем. Структурная организация популяций: пространственная и демографическая (возрастная, половая, размерная).

Популяция – одно из центральных понятий в биологии и обозначает совокупность особей одного вида, которая обладает общим генофондом и имеет общую территорию. Она является первой надорганизменной биологической системой. С экологических позиций четкого определения определение популяции еще не выработано. Наибольшее признание получила трактовка С.С. Шварца, популяция – группировка особей, которая является формой существования вида и способна самостоятельно развиваться неопределенно долгое время.

Основным свойством популяций, как и других биологических систем является то, что они находятся в беспрерывном движении, постоянно изменяются. Это отражается на всех параметрах: продуктивности, устойчивости, структуре, распределении в пространстве. Популяциям присущи конкретные генетические и экологические признаки, отражающие способность систем поддерживать существование в постоянно меняющихся условиях: рост, развитие, устойчивость. Наука, объединяющая генетические, экологические и эволюционные подходы к изучению популяций, известна как популяционная биология.

Типы популяций. Популяции могут занимать разные по размеру площади и условия обитания в пределах местообитания одной популяции тоже могут быть не одинаковы. По этому признаку выделяют три типа популяций :

Элементарная (локальная) популяция – это совокупность особей одного вида, занимающих небольшой участок однородной пло-щади. Между ними постоянно идет обмен генетической информацией.

(Одна из нескольких стай рыб одного вида в озере)/

Экологическая популяция – совокупность элементарных популяций, внутривидовые группировки, приуроченные к конкретным биоценозам. Растения одного вида в ценозе называются ценопопуляцией. Обмен генетической информацией между ними происходит достаточно часто. ( Рыбы одного вида во всех стаях общего водоема).

Географическая популяция – совокупность экологических популяций, заселивших географически сходные районы. Географические популяции существуют автономно, ареалы их относительно изолированы, обмен генами происходит редко – у животных и птиц – во время миграций, у растений – при разносе пыльцы, семян и плодов. На этом уровне происходит формирование географических рас, разновидностей, выделяются подвиды

Половая структура популяции. Численное соотношение полов, т.е. половой состав, и особенно доля размножающихся самок в популяции, имеет большое значение для дальнейшего роста ее численности. Соотношение полов зависит, прежде всего, от биологии вида и сильно различается у моногамных (самец за сезон спаривается с одной самкой) и полигамных животных. Для первых (например, журавли, лебеди) нормой является соотношение полов 1:1. Для вторых (например, морские котики, павианы) типично преобладание самок. Среди моногамных животных почти постоянно имеются «резервные» самцы. Это уже половозрелые, но еще не размножающиеся животные; они представляют собой репродуктивный резерв популяции.

Неравномерность гибели разных полов, неодинаковая их выживаемость распространены среди животных. Как правило, более жизнеспособными являются самки.

В молодом возрасте самки и самцы различаются поведением. Самцы обычно более подвижны, менее привязаны к убежищам, поэтому чаще становятся жертвами хищников и непогоды.

При неблагоприятных условиях, когда популяция находится в депрессии, выживаемость самок резко возрастает и процент женских особей сильно превышает норму. Это явление имеет важное адаптивное значение, поскольку именно от самок зависит восстановление подорванной популяции.

Экологические и поведенческие различия между особями мужского и женского пола могут быть сильно выражены. Так, самцы комаров питаются нектаром растений и слизывают росу, а самки являются кровососущими. Но даже если образ жизни самцов и самок сходен, они различаются по многим физиологическим признакам: темпам роста, срокам полового созревания, устойчивостью к климатическим изменениям, голоданию и т.д.

Возрастная структура популяций. В каждом возрасте требование особей к среде и устойчивость к отдельным факторам заметно различаются. На ранних стадиях особи, как правило, более чувствительны к любым неблагоприятным факторам, а в зрелом возрасте они обычно выносливее. Кроме того, на разных стадиях жизненного цикла могут происходить смены сред обитания, типов адаптаций, характера передвижения, общей активности. Часто возрастные экологические различия в пределах вида выражены значительно сильнее, чем различия между видами. Так, сидящие на морском дне моллюски и морские ежи и их пелагические личинки; травяные лягушки на суше и их головастики в водоемах, гусеницы и бабочки – это всего лишь разные стадии онтогенеза одних и тех же видов.

У долгоживущих и размножающихся многократно видов возникает относительно устойчивая структура популяции с длительным существованием различных поколений. У видов с непродолжительным периодом взрослого состояния ежегодно сменяется значительная часть популяции. Численность такой популяции неустойчива и может резко различаться в отдельные годы, а возрастная структура популяции сильно варьирует (полевка-экономка).

Возрастной состав популяции определяется несколькими причинами, среди которых можно указать на время достижения половой зрелости, общую продолжительность жизни, длительность периода размножения, продолжительность жизни поколения, частоту приплода, смертность, тип динамики численности.

Возрастная структура популяции является весьма неустойчивой характеристикой.

Пространственная структура популяций. Занимаемое популяцией пространство предоставляет ей средство к жизни. Каждая территория или акватория может прокормить лишь определенное число особей. Однако полнота использования ресурсов зависит не только от общей численности особей популяции, но и от их размещения в пространстве. Это хорошо видно на примере растений, «жизненная территория» которых не может быть меньше некоторой предельной величины (злаки – 25–30 см2). Перехватывая корнями питательные вещества и воду, выделяя активные вещества, каждое растение распространяет свое влияние на определенную территорию, поэтому оптимальным для популяции является такой интервал между соседними особями, при котором они не влияют отрицательно друг на друга.

Равномерное упорядоченное распределение особей на занимаемой территории в природе встречается редко. В каждом конкретном случае тип распределения в занимаемом пространстве оказывается приспособительным, т.е. позволяющим оптимально использовать имеющиеся ресурсы.

У подвижных животных имеются разнообразные способы упорядочивания распределения в пространстве. Эти животные делятся на две основные группы – оседлых и кочевых. При оседлом существовании животные в течение всей или большей части жизни используют довольно ограниченный участок среды. Этот образ таит в себе угрозу быстрого истощения ресурсов, поэтому у оседлых животных выработались приспособления, которые обеспечивают разграничения мест обитания отдельных особей или других внутрипопуляционных группировок.

Статистические и динамические показатели состояния популяции (численность, плотность, показатели структуры, рождаемость, смертность, скорость роста популяций), факторы их регулирующие.

Статические и динамические показатели популяции. При описании структур и функционирования популяции используют две группы показателей. Если мы даем характеристику состояния популяции на конкретное данное время t, то мы используем статические показатели – количество особей в популяции, площадь ареала (пространства, где обитает данная популяция), плотность особей (средняя и в разных частях ареала), характер пространственного распределения особей, численность разных возрастных групп, численность особей разных полов, численность особей по разным размерам, численность здоровых и больных особей. С другой стороны, эколога всегда интересуют изменения, которые происходят в популяции не только в пространстве, но и во времени. Именно такие наблюдения лежат в основе моделирования характера и степени устойчивости экосистем, зависимости поведения экосистем в условиях экологических кризисов, в том числе и антропогенных. Экологу очень важно знать, какие изменения произошли с популяцией за время от первого до второго наблюдения t1-t0 = Dt. Иными словами, эколог должен определить, с какой интенсивностью происходят все возможно наблюдаемые изменения в популяции. Следовательно, динамические (временные) характеристики популяций связаны с понятием скорости, т.е., с какой скоростью происходят все изменения в популяции. К динамическим характеристикам относятся рождаемость, смертность, мгновенная скорость роста популяции, продолжительность жизни и кривые выживания. Динамические характеристики всегда строятся по конкретным изменениям, которые произошли в статических структурах. Поэтому классификация популяций по статическим структурам чрезвычайно важна. Основными статическими показателями структуры популяций являются численность и распределение организмов в пространстве, а также соотношение разнокачественных особей. В популяции выделяют половые и возрастные группы и соответственно различают половую и возрастную структуру популяций. Обе эти характеристики иногда объединяют, говоря обобщенно о демографической структуре популяции. Кроме того, популяцию характеризует пространственная и этологическая (т.е. связанная с поведением) структура. Знание структуры популяции позволяет оценивать не только состояние популяции в данный момент, но и представить направление ее дальнейшего развития. Исходя из вышесказанного, популяции можно также классифицировать по их пространственной и возрастной структуре, по постоянству приуроченности или смене сред обитания и другим экологическим критериям.

Сообщества, особенности в уровне их организации. Понятие о биоценозе, его структура. Биотоп. Связи организмов в биоценозе: трофические, топические, форические и фабрические. Экониша.

Биоценоз — это совокупность животных, растений, грибов и микроорганизмов, что заселяют определённый участок суши или акватории, они связаны между собой и со средой. Биоценоз — это динамическая, способная к саморегулированию система, компоненты (продуценты, консументы, редуценты) которой взаимосвязаны. Один из основных объектов исследования экологии. Биоценоз — это исторически сложившаяся группировка растений, животных, грибов и микроорганизмов, населяющих относительно однородное жизненное пространство (участок суши или водоёма). Наиболее важными количественными показателями биоценозов являются биоразнообразие (совокупное количество видов в биоценозе) и биомасса (совокупная масса всех видов живых организмов данного биоценоза).

Местообита́ние (ме́сто обита́ния, биото́п) — совокупность биотических, абиотических и антропогенных (при их наличии) экологических факторов на любой определённой территории или акватории, формирующаяся на месте первичного комплекса абиотических факторов — экотопа.

Прямые и косвенные межвидовые отношения по значению, которое они имеют для занятия видом в биоценозе определенного положения, по классификации В. Н. Беклемишева (1970), подразделяются на четыре типа: 1) трофические, 2) топические, 3) форические и 4) фабрические.

Трофические связи наблюдаются, когда один вид питается другим —либо их мертвыми остатками, либо продуктами их жизнедеятельности. При конкуренции двух видов из-за объектов питания между ними возникает косвенная трофическая связь, вследствие того что деятельность одного отражается на снабжении кормом другого. Воздействие одного вида на поедаемость другого или доступность для него пищи расценивается так же, как косвенная трофическая связь между ними.

Топические связи характеризуют любое физическое или химическое изменение условий обитания одного вида в результате жизнедеятельности другого. Данный вид связей отличается большим разнообразием. Топические связи заключаются в создании одним видом среды для другого (внутренний паразитизм или норовый комменсализм), в формировании субстрата, на котором поселяются или избегают поселяться представители других видов, во влиянии на движение воды, воздуха, изменение температуры, освещенности окружающего пространства, в насыщении среды продуктами насыщения и т. д. Морские желуди, поселяющиеся на коже китов, лишайники на стволах деревьев связаны прямой топической связью с организмами, представляющими им субстрат или среду обитания. Значительная роль в создании или изменении среды для других организмов принадлежит растениям. Из-за особенностей энергообмена растительность является мощным фактором перераспределения тепла у поверхности Земли и создания мезо- или микроклимата. Под пологом леса подлесок, напочвенный покров, животные находятся в условиях более выравненных температур, более высокой влажности воздуха и т. д. Хотя и в меньшей степени, травянистая растительность; также изменяет режим окружающего пространства. В результате положительных или отрицательных топических взаимоотношений одни виды определяют или исключают возможность существования в биоценозе других видов. В биоценозе трофические и топические связи имеют наибольшее значение, составляют основу его существования. Эти типы¦ отношений удерживают друг возле друга организмы разных видов, объединяя их в сравнительно стабильные сообщества разных масштабов.

Дата добавления: 2018-02-28 ; просмотров: 899 ; Мы поможем в написании вашей работы!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *