обратный тяговый ток на железной дороге что это

По рельсам течет обратный тяговый ток — как это понять?

Опубликовано 12.06.2021 · Обновлено 26.10.2021

Возможно вам доводилось слышать такое выражение, как «обратный тяговый ток», ну или «отсасывающий фидер», но вот что бы это могло означать, так сразу понять сложно. Давайте же разберемся с этими связанными понятиями и где этот ток возникает.

Если речь идет об электрическом токе, значит мы говорим исключительно об электрифицированных железнодорожных участках, а как известно в России применяется электрификация двумя родами тока: постоянным 3000 В и переменным 25000 В. Обратный ток имеет место в обоих случаях, по этому принципиальной разницы между ними нет.

обратный тяговый ток на железной дороге что это. Смотреть фото обратный тяговый ток на железной дороге что это. Смотреть картинку обратный тяговый ток на железной дороге что это. Картинка про обратный тяговый ток на железной дороге что это. Фото обратный тяговый ток на железной дороге что этоТяговая подстанция

Каким образом электродвижущий подвижной состав получает электроэнергию? Для электропитания предназначена контактная сеть, которая, как известно, однопроводная. От тяговой подстанции один фазный провод подключается к контактной сети, создавая разность потенциалов… — так, а вот здесь загвоздка. Для создания этой разности, в результате которой собственно и возникнет электрический ток, нужен еще один проводник, ведь электрическая цепь должна быть замкнутой. Видели когда-нибудь троллейбус? — Уверен что да, так вот он подключается к двухпроводной контактной сети, а трамвай и электродвижущий подвижной состав используют в качестве второго контактного провода рельсовое полотно.

Рельсы отлично проводят электрический ток, и они как нельзя кстати подходят на роль второго проводника, без которого вообще невозможна никакая электродвижущая сила. Экономия и простота налицо. Теперь об обратном токе — в принципе, это довольно абстрактное понятие, которое собственно и обозначает ток, текущий от локомотива к тяговой подстанции, а «отсасывающий фидер» это как раз то устройство, которое соединяет рельсовое полотно со вторым выводом на тяговой подстанции. Следует отметить, что на одном участке, обслуживающимся одной тяговой подстанцией, по рельсовой цепи будут идти очень сильные токи, так как на одном участке могут одновременно работать несколько единиц подвижного состава, и их токи суммируются. Особенно это выражено, когда речь идет о подстанциях постоянного тока.

обратный тяговый ток на железной дороге что это. Смотреть фото обратный тяговый ток на железной дороге что это. Смотреть картинку обратный тяговый ток на железной дороге что это. Картинка про обратный тяговый ток на железной дороге что это. Фото обратный тяговый ток на железной дороге что это

Рельсы — это точно такая же часть электрической цепи, как и контактный провод, только потенциал которых равен потенциалу земли. Для выравнивания потенциалов, чтобы предотвратить поражение человека, наступившего на рельсы, электрическим током, рельсовая цепь дополнительно заземляется. В случае с переменным током имеет место система с глухозаземленной нейтралью. На контактную сеть подается одна из трех фаз, а к рельсам подходит «средняя точка» или нейтраль трансформатора, которая дополнительно заземлена.

Поражение электрическим током в реальности возможно только в одном случае: если в рельсовой цепи произошел обрыв. В этом месте вероятнее всего возникнет электрическая дуга, которая нанесет немалый ущерб из-за своей высокой температуры. Особенно часто дуга возникает в цепях с постоянным током. Иногда железнодорожники говорят «прорыв обратных токов», имея в виду как раз разрыв рельсовой цепи и возникшую электрическую дугу.

Автор:
Иван Беляев, ЖД-эксперт

Источник

Большая Энциклопедия Нефти и Газа

Обратный тяговый ток

Обратный тяговый ток протекает по рабочим рельсам в тоннеле кратковременно только тогда, когда поезд находится в пределах тоннеля. Третья рельсовая нить укладывается на полушпалках на расстоянии 1 2 м от крайнего рабочего рельса. [1]

Для возвращения обратного тягового тока на подстанцию необходимо обеспечить его прохождение по двум рельсовым нитям в обход изолирующих стыков, разделяющих блок-участки. Переменный сигнальный ток рельсовой цепи автоблокировки не может пройти через обмотку дроссель-трансформатора, так как она имеет большое сопротивление. [3]

По способу пропуска обратного тягового тока в обход изолирующих стыков на участках с электрификацией РЦ подразделяются на однониточные и д & ухниточные. Тяговый ток / т подается от тяговой подстанции к электровозам по контактному проводу через пантограф, а возвращается к подстанции по рельсовым нитям и земле. Поэтому необходимо создать путь для протекания обратного тягового тока по рельсам в обход изолирующих стыков, разделяющих смежные РЦ. Их средние точки соединяют между собой перемычкой П, обеспечивая пропуск обратного тягового тока в обход изолирующих стыков. Сигнальный ток / с в каждой РЦ протекает через основную обмотку 1 и / ДТ в одном направлении, вследствие чего на ней создается падение напряжения, используемое для работы РЦ. Дополнительные обмотки ДТ 2 и 2 подключаются к аппаратуре питающего и релейного концов РЦ. В однониточных РЦ ( рис. 15.52 6) тяговый ток / т пропускается по одной рельсовой нити. [5]

Стыковые дроссели применяют для пропуска обратного тягового тока в обход изолирующих стыков при электротяге. [6]

В однониточных рельсовых цепях, применяемых на станционных путях и стрелочных переводах, для пропуска обратного тягового тока используется только одна рельсовая нить каждого пути, которая оборудуется рельсовыми соединителями; тяговые нити всех смежных однониточных цепей соединяются параллельно междупутными рельсовыми соединителями в горловинах станций, у входных сигналов, в пунктах присоединения отсасывающих проводов у тяговых подстанций и через каждые 400 м пути. [11]

Источник

Рельсовая цепь

Рельсовая цепь представляет собой электрическую цепь, в которой имеется источник питания и нагрузка (путевое реле), а проводниками электрического тока служат рельсовые нити железнодорожного пути.

Содержание

Устройство и принцип действия

Рельсовые цепи служат для контроля свободного или занятого состояния участка пути на перегонах и станциях, контроля целостности рельсовых линий, передачи кодовых сигналов с путевых устройств на локомотив и между путевыми устройствами.

Параметры рельсовых цепей

При передаче сигнального тока от источника питания к путевому реле, часть энергии теряется за счёт падения напряжения на сопротивлении рельсовых нитей и утечек тока через сопротивление изоляции. Сопротивление изоляции рельсовой цепи зависит от типа балласта и шпал, их загрязнения, температуры и влажности окружающей среды, зазора между балластом и подошвами рельса и практически не изменяется при изменении частоты сигнального тока от 0 до 2000 Гц. Хорошими изоляционными свойствами обладают щебень и гравий, худшими — песок. Железобетонные шпалы имеют меньшее сопротивление по сравнению с деревянными, поэтому подошвы рельсов изолируются от них резиновыми прокладками. Установлена норма минимального удельного сопротивления изоляции для всех видов балласта — 1 Ом·км. В зимнее время сопротивление изоляции может достигать 100 Ом·км.

Удельное сопротивление рельсовой цепи зависит от частоты сигнального тока и увеличивается от 0,5 Ом/км при частоте 25 Гц до 7,9 Ом/км при частоте 780 Гц. Для стабилизации сопротивления рельсовых нитей, состоящих из звеньев, скреплённых накладками, на токопроводящих стыках устанавливаются стыковые соединители.

Виды рельсовых цепей

По принципу действия рельсовые цепи разделяются на нормально-замкнутые и нормально-разомкнутые. В нормально-замкнутых рельсовых цепях, при свободном состоянии контролируемого участка, путевое реле находится под током, контролируя свободность участка и исправность всех элементов. В нормально-разомкнутых рельсовых цепях, при свободном состоянии контролируемого участка, путевое реле находится в обесточенном состоянии. Преимуществами нормально-разомкнутых рельсовых цепей являются более высокое быстродействие при фиксации занятости контролируемого участка пути (так как реле быстрее притягивает якорь, чем отпускает) и меньший расход кабеля (поскольку питающий и релейный конец рельсовой цепи совмещены). Однако в нормально-разомкнутых рельсовых цепях не контролируется исправность элементов и целостность рельсовых нитей, поэтому они применяются только на сортировочных горках.

Существуют три основных режима работы нормально-замкнутых рельсовых цепей:

В нормальном режиме сигнальный ток протекает по рельсовым нитям от источника к путевому реле, фронтовые контакты которого замыкаются, чем фиксируют свободность контролируемого участка. В шунтовом режиме рельсовые нити замыкаются между собой через малое сопротивление колёсных пар, резко уменьшается сила тока, протекающего через путевое реле, которое размыкает фронтовые контакты и замыкает тыловые, чем фиксирует занятость контролируемого участка. В контрольном режиме ток через путевое реле уменьшается (но не до нуля, из-за распространения тока через балласт в обход места разрыва), в результате чего фиксируется занятость контролируемого участка.

Для питания рельсовых цепей может использоваться постоянный или переменный сигнальный ток. Рельсовые цепи постоянного тока применяются на участках с автономной тягой, переменного — на участках, как с автономной, так и с электрической тягой.

Режим питания рельсовых цепей может быть:

В рельсовых цепях используются одноэлементные, двухэлементные, электронные и микропроцессорные путевые реле. Двухэлементные (фазочувствительные) реле имеют путевую обмотку, включенную в рельсовую цепь и местную обмотку. Срабатывание реле происходит при одинаковой частоте тока в путевой и местной обмотке и сдвиге фаз между ними на определённый угол. Достоинством фазочувствительных реле является надёжная защита от влияния тягового тока и других помех.

Для контроля занятости стрелочных переводов используются разветвлённые рельсовые цепи, которые могут иметь два или три путевых реле.

Разделение смежных рельсовых цепей

Для разделения смежных рельсовых цепей на границах контролируемых участков устанавливаются изолирующие стыки. При повреждении (сходе) изолирующих стыков должно быть исключено влияние источника питания одной рельсовой цепи на путевое реле смежной цепи, путевые реле обеих цепей должны фиксировать ложную занятость. Для этого в рельсовых цепях с непрерывным питанием при использовании постоянного тока чередуется полярность источников питания смежных цепей, при использовании переменного тока — чередуются фазы. Контроль схода стыка в кодовых рельсовых цепях осуществляется схемным путём.

Тональные рельсовые цепи на перегонах работают без изолирующих стыков. Взаимные влияния исключаются применением на смежных участках сигналов с различными несущими частотами и частотами модуляции.

Канализация обратного тягового тока

Обратный тяговый ток может пропускаться по одной нити рельсовой цепи (однониточные цепи) или по двум рельсовым нитям (двухниточные цепи). В двухниточных рельсовых цепях для пропуска тока в обход изолирующего стыка используются дроссель-трансформаторы. Возникающая, вследствие неравенства сопротивления нитей или сопротивления изоляции, асимметрия тягового тока оказывает неблагоприятное воздействие на работу АЛСН и не должна превышать 15 А. Однониточные рельсовые цепи проще двухниточных, так как в них отсутствуют дроссель-трансформаторы, но из-за неравномерности распределения тягового тока невозможна работа АЛСН, поэтому однониточные рельсовые цепи используются только на некодируемых станционных путях.

См. также

Литература

Системы железнодорожной автоматики и телемеханики: Учеб. для вузов/ Ю. А. Кравцов, В. Л. Нестеров, Г. Ф. Лекута и др.; под ред. Ю. А. Кравцова. М.: Транспорт, 1996. 400с.

Источник

Рельсовые цепи на участках с электротягой постоянного тока

Перегонные кодовые рельсовые цепи частотой 50 Гц (рис. 3.13). На питающем и релейном концах рельсовой цепи устанавливают дроссель-трансформаторы типов ДТ-0,6 и ДТ-0,2, обеспечивающие пропуск обратного тягового тока. Аппаратуру питающего и релейного концов подключают к дополнительным обмоткам дроссель-трансформаторов. Для защиты обслуживающего персонала и аппаратуры от перенапряжений к дополнительным обмоткам дроссель-трансформаторов подключают защитные элементы ЭЗ (разрядники, выравниватели). Рельсовая цепь получает питание от путевого трансформатора ПТр типа ПОБС-ЗА, напряжение на вторичной обмотке которого выставляют в зависимости от длины рельсовой цепи. Конденсаторы СІ, С2, СЗ, включенные на питающем конце, суммарной емкостью 24 мкФ обеспечивают резонанс токов, необходимый для снижения мощности, потребляемой рельсовой цепью. Одновременно конденсаторы уменьшают искрообразование на контактах трансмиттерного реле Т. Реактор 0 типа РОБС-ЗА ограничивает ток в цепи дополнительной обмотки дроссель-трансформатора при нахождении поезда на питающем конце и обеспечивает необходимую шунтовую чувствительность. В зависимости от показания путевого светофора 1 в рельсовую цепь навстречу поезду контактом трансмиттерного реле Т, обмотка которого включена в цепь контактов кодового трансмиттера, посылаются кодовые сигналы КЖ, Ж и 3 (см. рис. 1.22). При свободности и исправности рельсовой цепи на релейном конце коды воспринимает импульсное путевое реле И, подключенное к дополнительной обмотке дроссель-трансформатора через защитный блок-фильтр ЗБФ. Реле И, переключая контакт на входе дешифраторной ячейки ДШ, в зависимости от принимаемого кода возбуждает сигнальные реле Ж и 3, которые управляют огнями путевого светофора 3 и используются в других цепях контроля и управления.

Кодовая рельсовая цепь защищена от опасного и мешающего действий гармоник тягового тока. Гармоники, кратные 300 Гц, устра

обратный тяговый ток на железной дороге что это. Смотреть фото обратный тяговый ток на железной дороге что это. Смотреть картинку обратный тяговый ток на железной дороге что это. Картинка про обратный тяговый ток на железной дороге что это. Фото обратный тяговый ток на железной дороге что это

Рис 3.13 Схема кодовой рельсовой цепи частотой 50 Гц

В защитном блок-фильтре находится дроссель ДрЗ, защищающий реле И от перенапряжений при замыкании изолирующих стыков, когда обмотка реле И получает питание от источника питания смежной рельсовой цепи, в результате чего возможно повреждение выпрямителя реле И. Этот дроссель обладает нелинейной характеристикой и при нормальном уровне напряжения на нем (до 5 В) сопротивление дросселя велико (около 5000 Ом), поэтому он не оказывает влияние на работу рельсовой цепи. С повышением напряжения до 12 В резко падает его сопротивление (до 20 Ом), обмотка реле И шунтируется и избыточное напряжение распределяется между защитным резистором /?3 и обмоткой реле И. При замыкании изолирующих стыков реле И срабатывает от источника смежной рельсовой цепи. Для исключения ложного срабатывания сигнальных реле Ж и 3 в этом случае применена схемно-временная защита (см. п. 6.4). Предельная длина кодовой рельсовой цепи 2600 м.

Станционные фазочувствительные двухниточные рельсовые цепи 50 Гц (рис. 3.14). Эти рельсовые цепи применяются на всех путях и стрелочных путевых участках станций. Они кодируются с питающего и релейного концов. Вся аппаратура расположена на посту электрической централизации. Дополнительные обмотки дроссель-трансформаторов, размещаемых на пути, подключают к аппаратуре кабелем. Дублирование жил кабеля не требуется при расстоянии рельсовой линии от поста не более 2 км. Рельсовую цепь регулируют подбором напряжения на вторичной обмотке путевого трансформатора ПТр типа ПОБС-ЗА. Особенностью этих рельсовых цепей является использование путевых фазочувствительных реле Я типа ДСШ-12, срабатывание которых зависит от значения и фазы сигнала. Эту особенность используют для защиты путевого реле от ложного срабатывания от источника питания смежной рельсовой цепи при замыкании изолирующих стыков. Для решения этой задачи в смежных рельсовых цепях предусматривают чередование фаз напряжений, что достигается изменением концов проводов на питающих трансформаторах. При замыкании изолирующих стыков на путевую обмотку реле поступает сигнал противоположной фазы от источника Питания смежной рельсовой цепи и сектор реле прижимается к нижнему ролику, замыкая тыловой контакт (см. рис. 1.20). В этих рельсовых цепях используют фазовый способ контроля замыкания изолирующих стыков.

обратный тяговый ток на железной дороге что это. Смотреть фото обратный тяговый ток на железной дороге что это. Смотреть картинку обратный тяговый ток на железной дороге что это. Картинка про обратный тяговый ток на железной дороге что это. Фото обратный тяговый ток на железной дороге что это

Кодовые сигналы АЛС посылаются с питающего конца с момента размыкания фронтового контакта путевого реле П контактом трансмиттерного реле Т. Кодирование с релейного конца осуществляется от кодирующего трансформатора КТр с момента замыкания тылового контакта путевого реле контактом трансмиттерного реле 77. Предельная длина этой рельсовой цепи 1500 м.

Станционные фазочувствительные однониточные рельсовые цепи 50 Гц (рис. 3.15). Такие рельсовые цепи применяют на некодируемых путях и стрелочных секциях. Они просты по устройству и дешевле двухниточных рельсовых цепей, но имеют некоторые недостатки. Одним из них является практически полная асимметрия тягового тока, обусловливающая появление сильных помех от гармоник тягового тока на работу рельсовых цепей и на локомотивные устройства АЛС, в связи с чем однониточные рельсовые цепи не коди руются. Тяговые нити, по которым проходит тяговый ток всех однониточных рельсовых цепей, на станции объединяют перемычками Н в нескольких точках не реже чем через 400 м, для уменьшения сопротивления рельсового тракта тяговому току и снижения влияния тягового тока на работу рельсовой цепи. Эти перемычки ухудшают шунтовой режим и полностью исключают возможность выполнения контрольного режима при обрыве тяговой нити. Поэтому однониточные рельсовые цепи при новом строительстве не применяют. Их предельная длина 1100 м.

Рельсовую цепь регулируют подбором напряжения на питающем трансформаторе ПТр, расположенном в трансформаторном ящике ТЯ на питающем конце рельсовой цепи. Резисторы Я0 и /?3, а также автоматические выключатели АВМ предохраняют аппаратуру от воздействия тягового тока.

В настоящее время на станциях при электротяге постоянного тока проектируют фазочувствительные двухниточные рельсовые цепи частотой 25 Гц, кодируемые током 50 Гц.

Источник

Электроснабжение электрических железных дорог

Содержание

Системы тяги и тягового электроснабжения

На железных дорогах нашей страны две системы электрической тяги: постоянного тока напряжением 3 кВ и переменного тока напряжением 25 кВ промышленной частоты 50 Гц. Система тяги определяется родом тока и значением напряжения в тяговой сети. Для обеих названных систем тяги создан и эксплуатируется разнообразный электроподвижной состав (ЭПС).

Одно и то же напряжение в тяговой сети при заданном роде тока можно получить несколькими способами, поэтому различают системы тяги и системы тягового электроснабжения, реализующие их. Под системой тягового электроснабжения понимают комплекс электротехнических устройств, предназначенных для получения напряжения, подаваемого в тяговую сеть.

В нашей стране используют три вида систем тягового электроснабжения: систему постоянного тока 3,3 кВ, систему однофазного переменного тока 25 кВ и систему однофазного переменного тока 2×25 кВ. Система тяги переменного тока 25 кВ реализуется при применении двух последних систем тягового электроснабжения. За рубежом (Канада, США, ЮАР) в последнее время нашла применение новая система тяги переменного тока 50 кВ промышленной частоты 50 Гц, действующая в системе тягового электроснабжения того же названия. В то же время в странах центральной и северной Европы (Германия, Швейцария, Швеция, Австрия, Норвегия) продолжается использование давно введённой системы тяги переменного тока напряжением 15 кВ пониженной частоты 162/3 Гц. Эта система тяги реализуется в двух системах тягового электроснабжения пониженной частоты 162/3 Гц: с вращающимися генераторами и преобразователями и со статическими преобразователями.

Основным потребителем энергии в любой системе тягового электроснабжения является ЭПС, который может получить энергию, лишь подключившись к тяговой сети при условии, что в тяговую сеть уже подано напряжение. Поэтому следует прежде всего обращать внимание на то, каким образом в тяговую сеть подаётся напряжение и как оно формируется в системе тягового электроснабжения.

Принципиальная схема участка железной дороги, электрифицированной по системе постоянного тока 3 кВ

обратный тяговый ток на железной дороге что это. Смотреть фото обратный тяговый ток на железной дороге что это. Смотреть картинку обратный тяговый ток на железной дороге что это. Картинка про обратный тяговый ток на железной дороге что это. Фото обратный тяговый ток на железной дороге что это

На схеме приведён участок электрифицированной железной дороги длиной 20—25 км с двумя соседними тяговыми подстанциями I и II, расположенными вблизи станций А и В (Рисунок 1, а).

К линии электропередачи (ЛЭП) трёхфазного переменного тока 110 кВ 12 подключён понижающий трансформатор тяговой подстанции 11. Этим трансформатором первичное напряжение 110 кВ понижается до 10 кВ и подаётся на шины 10 распределительного устройства тяговой подстанции. К этим шинам подключён преобразовательный агрегат, состоящий из преобразовательного трансформатора 9 и выпрямителя 8. Пониженное до 3 кВ напряжение на выходе преобразовательного трансформатора 9 выпрямляется и подаётся на шины «плюс» 6 и «минус» 7 тяговой подстанции.

Тяговая сеть перегона между подстанциями образована контактной сетью 22 и рельсами 26. Контактная сеть 22 питающей линией (фидером контактной сети) 4 через выключатель 5 соединена с шиной «плюс» 6, а рельсы 26 питающей линией (рельсовым фидером) 1 с шиной минус» 7 тяговой подстанции. Таким образом, если будет включён выключатель 5 фидера контактной сети (на схемах, согласно ГОСТ 2.755-87 все выключатели показаны в начальном отключённом положении), то в тяговую сеть перегона, то есть между контактной сетью 22 и рельсами 26, будет подано выпрямленное напряжение 3,3 кВ постоянного тока. Подняв на ЭПС токоприёмник 23 и включив выключатель 24, машинист соберёт цепь тока через тяговые двигатели 25, и ЭПС, потребляя энергию, начнёт двигаться. Через другие фидеры и выключатели тяговой сети с шиной «плюс» 3,3 кВ соединены: контактная сеть 2 станции А и контактная сеть перегона слева от станции. Участки контактной сети перегона 22 и станции 2 отделены друг от друга изолирующим сопряжением — воздушным промежутком 3, который, однако, обеспечивает непрерывный токосъём с контактной сети при проходе по нему токоприёмника ЭПС.

Аналогичным образом на этот же участок тяговой сети 22, 26 подаётся напряжение 3,3 кВ постоянного тока с подстанции //. Тем самым обеспечивается двусторонний подвод электрической энергии к ЭПС или, как говорят, его двустороннее питание. Существуют также другие, вспомогательные, линии электроснабжения участка. Чтобы обеспечить электрической энергией собственные нужды тяговой подстанции, а именно питать цепи управления, сигнализации, освещения, отопления и моторную нагрузку самой тяговой подстанции, на ней устанавливают трансформатор собственных нужд (ТСН) 13. Он понижает напряжение до 380/220 В переменного тока. Этими напряжениями и питаются цепи собственных нужд 14 (на схеме стрелки, отходящие от шин 380/220 В).

Вдоль трассы железной дороги расположено много нетяговых железнодорожных потребителей электрической энергии. К ним относятся установки, ринадлежащие всем службам дороги, механизмы и инструменты, для работы которых необходима электроэнергия, а также освещение станций, переездов и других объектов. Кроме того, электрической энергией снабжаются некоторые промышленные предприятия, колхозы, совхозы и т. д., расположенные по обе стороны железной дороги. Для питания всех перечисленных потребителей вдоль трассы железной дороги проложена трёхфазная воздушная линия (ВЛ) 10 кВ 17, подключённая к шинам 10 кВ 10 двух соседних подстанций I и II. В середине межподстанционной зоны ВЛ секционирована разъединителем 18, который нормально отключён. Благодаря этому каждая из подстанций питает только часть нетяговых потребителей, находящихся в межподстанционной зоне. При отключении любой из подстанций разъединитель 18 включают, и тогда все нетяговые потребители питаются от одной, неотключённой подстанции.

Ответственнейшие потребители электроэнергии — устройства СЦБ (сигнализации, централизации, блокировки) и связи, которые расположены вдоль трассы железной дороги. К таким устройствам относятся светофоры. Они получают питание от путевых ящиков СЦБ 21 через отдельный понижающий трансформатор 20, который в свою очередь получает питание от трёхфазной ВЛ СЦБ 10 кВ, трасса которой проходит вдоль железной дороги. Напряжение в эту линию подаётся от повышающего трансформатора 15, подключённого к шинам 380/220 В собственных нужд 14 тяговой подстанции. ВЛ СЦБ также подключена к обеим подстанциям / и // и в середине межподстанционной зоны секционирована разъединителем 19. Благодаря этому устройства СЦБ могут получать питание сразу от двух подстанций (при разомкнутом разъединителе 19) или от одной из них, когда другая отключена и включён разъединитель 19.

Устройство трёхфазной ЛЭП 110 кВ 12 таково: на опоре 27 (Рисунок 1, б) располагаются две трёхфазные линии (цепи) 110 кВ, одна слева, другая справа. На металлических траверсах 28 укрепляются гирлянды изоляторов 29, к которым подвешиваются провода линии 12.

На рисунке 1, в изображён разрез по двухпутному участку дороги. В нижней части видны четыре рельсовые нити 26 железнодорожного пути двухпутного участка (см. также рис. 1, а). На опорах контактной сети 33 подвешены провода различного назначения: усиливающие провода — алюминиевые тросы 30 — через изоляторы 31 к траверсе 32 с полевой стороны опоры 33; на консоли 34 через изолятор 31 несущий трос 35; фиксатор 36, укреплённый через изолятор 31, удерживает два контактных провода 37, не позволяя им перемещаться поперёк пути. Соединённые между собой во многих точках усиливающий провод 30, несущий трос 35 и контактные провода 37 и образуют собственно контактную сеть перегона 22 (см. рис. 1, а).

С полевой стороны другой опоры 33 контактной сети на специальных кронштейнах и штыревых изоляторах 38 крепится продольная трёхфазная ВЛ 17 напряжением 10 кВ, о назначении которой сказано выше. Все светофоры 39 получают питание через путевой шкаф СЦБ 21 и кабель 42 от однофазного понижающего трансформатора 20, присоединённого к линии передачи СЦБ 10 кВ 16, проходящей вдоль железной дороги на собственных опорах 40. Провода ЛЭП СЦБ укреплены на штыревых изоляторах 41.

По системе постоянного тока напряжением 3 кВ в границах РФ электрифицировано свыше 19 тыс. км железных дорог, и среди них самые грузонапряжённые. В последние годы при электрификации железных дорог предпочтение отдавалось более совершенным системам 25 кВ или 2×25 кВ переменного тока промышленной частоты.

Принципиальная схема участка железной дороги, электрифицированной по системе переменного тока 25 кВ

обратный тяговый ток на железной дороге что это. Смотреть фото обратный тяговый ток на железной дороге что это. Смотреть картинку обратный тяговый ток на железной дороге что это. Картинка про обратный тяговый ток на железной дороге что это. Фото обратный тяговый ток на железной дороге что это

На схеме приведён участок электрифицированной железной дороги длиной 40—50 км с двумя тяговыми подстанциями / и //, расположенными вблизи станций А и В. К линии электропередачи 12 трёхфазного переменного тока 110 кВ подключён понижающий трёхобмоточный трансформатор 10 тяговой подстанции. Этим трансформатором первичное напряжение 110 кВ понижается до 25 кВ, а также до 35 или 10 кВ. Напряжение 25 кВ подаётся на шины 7, 8 и 9 (соответственно фазы b, а и с) и используется для питания тяговой сети, а напряжение 35 (или 10) кВ — на шины 11 и используется для питания прилегающего к подстанции района (Рисунок 2, а).

Для равномерной загрузки всех трёх фаз системы внешнего электроснабжения (ей принадлежит ЛЭП 110 кВ) в тяговую сеть станции А и перегона слева от неё подаётся напряжение, отличающееся по фазе от напряжения, подаваемого в тяговую сеть перегона справа. Для этого участки контактной сети указанных перегонов и станции, а также рельсы, присоединены к разным фазам шин 27,5 кВ; контактная сеть перегона 26 через фидер контактной сети 4 и выключатель 5 подключена к шине фазы b, контактная сеть станции 1 и перегона слева от неё — к шине фазы а, а рельсы через рельсовый фидер 6 — к шине фазы с. При таком подключении к шинам 27,5 кВ соединение контактной сети слева от станции А с контактной сетью станции токоприёмниками движущегося ЭПС 27 возможно, так как они присоединены к одной и той же фазе а. Соединение же контактной сети 1 станции и контактной сети 26 перегона справа от подстанции недопустимо, так как они присоединены к двум разным фазам а и b. Такое соединение приведёт к короткому замыканию фаз а и b понижающего трансформатора 10. Поэтому участки контактной сети 1 станции и перегона слева от неё разделены воздушным промежутком 2, а станции и перегона справа — двумя воздушными промежутками 2 и нейтральной вставкой между ними 3. Наличие нейтральной вставки 3 исключает даже кратковременное замыкание фаз а и b трансформатора 10 токоприёмниками ЭПС при проходе ими этого участка тяговой сети.

Подача напряжения в тяговую сеть перегона происходит при включении выключателя 5 фидера контактной сети. После этого машинист ЭПС может, подняв токоприёмник 27 и включив выключатель 28, подать переменное напряжение на первичную обмотку понижающего тягового трансформатора 31. Напряжение на вторичной обмотке тягового трансформатора выпрямляется выпрямителем 32 и через сглаживающий реактор 29 подводится к тяговым двигателям 30. Через электродвигатели начинает протекать ток, который приводит их и ЭПС в движение.

В тяговую сеть перегона между подстанциями напряжение подаётся от двух подстанций / и //. При этом обеспечивается двусторонний подвод энергии к ЭПС. Для обеспечения двустороннего питания ЭПС и равномерной загрузки фаз ЛЭП 110 кВ понижающие трансформаторы двух соседних подстанции / и // присоединены к ЛЭП 110 кВ неодинаково, а следуя специально разработанному правилу.

На рисунке также показаны другие вспомогательные линии электроснабжения участка. От шин тягового напряжения 27,5 кВ получают питание также нетяговые потребители. Для этого через выключатель 20 к шинам 7 и 8 подключают два провода, размещаемые на опорах контактной сети с полевой стороны. Понижающие трансформаторы потребителей 22 подключаются к этим проводам и рельсу. Такая система питания получила название ДПР (два провода — рельс). В середине линии ДПР установлен разъединитель 23. Нормально левая половина линии ДПР питается от подстанции /, а правая — от подстанции //, разъединитель 23 разомкнут. В случае необходимости (например, при отключении одной из подстанций) вся линия ДПР может получать питание от одной подстанции. При этом разъединитель 23 включается.

Энергию для собственных нужд тяговой подстанции (питание цепей управления, сигнализации, освещения, отопления, моторной нагрузки) получают от трансформатора собственных нужд (ТСН) 13 через шины собственных нужд 14 (на рисунке 2, а нагрузки собственных нужд обозначены стрелками). От шин собственных нужд 14 через трансформатор 15 напряжение подаётся в линию 16, предназначенную для питания устройств СЦБ и связи. От этой линии через маломощные понижающие трансформаторы 18 и релейные шкафы СЦБ 19 питаются светофоры. В середине линии 16 установлен разъединитель 17. Это даёт возможность питать линию от любой из двух подстанций / или // (при замкнутом разъединителе 17) или же каждую половину линии питать от своей подстанции (при разомкнутом разъединителе). Так как от работы устройств СЦБ непосредственно зависит выполнение графика движения поездов на участке, они должны иметь резервный источник питания. Устройства СЦБ получают резервное питание по линии 24 через понижающие однофазные трансформаторы 25 от линии ДПР 21.

На рисунке 2, б изображён разрез по двухпутному участку дороги.

Трёхфазная комплектная трансформаторная подстанция (КТП) 34, состоящая из трансформатора 22 и сопутствующего оборудования, получает питание от линии ДПР 21 через провода 36. Один провод линии ДПР 21 через изоляторы 37 подвешивается к консоли 38 с полевой стороны опоры контактной сети 39, а другой — с полевой стороны опоры 45 второго пути. Третий вывод КТП присоединяется проводом 35 к рельсам 33. На изолированной консоли 41, закреплённой на опоре через изоляторы 40, подвешен несущий трос 42. Одиночный контактный провод 44, удерживаемый фиксатором 43, занимает заданное положение относительно оси пути. Электрически соединённые во многих точках несущий трос 42 и контактный провод 44 и составляют контактную сеть 26 (см. рис. 2, а). Светофор 46 получает напряжение от маломощного понижающего однофазного трансформатора 18 через кабель 24 и релейный шкаф СЦБ 19. Трансформатор 18 подключён к трёхфазной линии передачи 10 кВ 16. Провода этой линии крепятся на штыревых изоляторах 48 опор 47, которые установлены параллельно железной дороге специально для линии СЦБ.

Проход воздушного промежутка 2 перед нейтральной вставкой 3 поездом, идущим со станции А в сторону станции В, происходит следующим образом. По правилам этот воздушный промежуток, как и нейтральную вставку, поезд должен проходить при отключённых тяговых электродвигателях или, как говорят, без тока. В противном случае возможен пережог ветви контактного провода 1 промежутка 2, принадлежащей ст. А.

Это может произойти так. Воздушный промежуток 2 изображён сбоку на рисунке 2, в. Высота подвеса контактных проводов ветвей 1 и 3 в пределах воздушного промежутка постепнно изменяется. В направлении слева направо контактный провод ветви 1 поднимается, а ветви 3 опускается. В точке а высоты подвеса обоих проводов равны. Поэтому, двигаясь по воздушному промежутку в направлении, указанном стрелкой, токоприёмник ЭПС до точки а скользит по проводу ветви 1 (позиция к), а после точки а — по проводу ветви 3 (позиция к+1). На провод 1 подано напряжение фазы А (см. рис. 2, а), на провод же 3, принадлежащий нейтральной вставке, напряжение не подано. По этой причине, двигаясь по воздушному промежутку, ЭПС может потреблять ток только до точки а. После её прохода контакт между контактным проводом 1 и токоприёмником 27 прекращается, и ток через двигатели ЭПС должен прерваться. Однако при большом токе (несколько сотен ампер) этого сразу не происходит, между контактным проводом и токоприёмником загорается электрическая дуга 49, которая за несколько долей секунды пережигает провод 1. Поэтому машинист и обязан отключать электродвигатели, или, как говорят, отключать ток, подъезжая к нейтральной вставке. Однако преждевременное отключение тока может вызвать остановку поезда на нейтральной вставке, следовательно, проезд нейтральной вставки требует от машиниста большого внимания.

В некоторых странах (Канада, США, ЮАР) появилась новая система тягового электроснабжения — система переменного тока напряжением 50 кВ частоты 50 или 60 Гц. Эта система аналогична системе переменного тока 25 кВ, но более высокое напряжение даёт возможность существенно увеличить передаваемую по тяговой сети электрическую мощность. Однако при этом приходится усиливать изоляцию контактной сети, увеличивать габариты между устройствами, находящимися под напряжением, и заземлёнными частями, и, конечно, требуется новый электроподвижной состав, рассчитанный на напряжение 50 кВ.

Стремление повысить мощность, передаваемую по тяговой сети, путём увеличения напряжения при одновременном желании использовать стандартный электроподвижной состав на напряжение 25 кВ привело к возникновению системы переменного тока 2×25 кВ. При этой системе электрическая энергия от тяговой подстанции к ЭПС передаётся в два этапа: сначала при напряжении 50 кВ, а затем 25 кВ. Для этого на опорах контактной сети с полевой стороны приходится подвешивать ещё один так называемый питающий провод (напряжение между ним и проводами контактной сети и составляет 50 кВ), и устанавливать на перегоне между подстанциями автотрансформаторы 50/25 кВ.

Система 2×25 кВ широко применяется как в нашей стране, так и в других странах (Франция, Япония), имеющих электрифицированные линии напряжением 25 кВ. Она рассматривается как средство усиления этих линий.

Принципиальная схема участка железной дороги, электрифицированной по системе переменного тока 15 кВ пониженной частоты 16⅔ Гц с вращающимися преобразователями

обратный тяговый ток на железной дороге что это. Смотреть фото обратный тяговый ток на железной дороге что это. Смотреть картинку обратный тяговый ток на железной дороге что это. Картинка про обратный тяговый ток на железной дороге что это. Фото обратный тяговый ток на железной дороге что это

В некоторых странах широкое распространение получила система переменного тока пониженной частоты. По этой системе работают с первых лет электрификации железные дороги стран центральной и северной Европы: Германии, Швейцарии, Швеции, Австрии, Норвегии. Понижение частоты объясняется стремлением использовать на переменном токе тяговый электродвигатель последовательного возбуждения, широко применяемый в электрической тяге на постоянном токе. Вращающий момент на валу электродвигателя пропорционален произведению тока и магнитного потока, поэтому электродвигатель последовательного возбуждения способен работать и на переменном токе, поскольку направления тока и магнитного потока меняются одновременно. Однако переменный магнитный поток электродвигателя приводит к возникновению так называемой трансформаторной э.д.с. в обмотке якоря двигателя. При значительной э.д.с. появляется сильное искрение под щётками, вплоть до кругового огня по коллектору при коммутации. Чтобы избежать этого, необходимо снизить частоту тока. Технически проще всего снизить частоту ровно в 3 раза: с 50 до 16⅔ Гц. Этим и объясняется появление электрифицированных участков 15 кВ частоты 16⅔ Гц. На рисунке 3 показан такой участок длиной 35—40 км с двумя соседними тяговыми подстанциями / и //, расположенными вблизи ст. А и В.

К линии электропередачи (ЛЭП) трёхфазного переменного тока 110 кВ 14 подключён трансформатор тяговой подстанции 13, понижающий напряжение до 6,0 кВ. Это напряжение подаётся на синхронный трёхфазный электродвигатель 12, на валу 11 которого установлен синхронный однофазный генератор 10 с выходным напряжением 5,7 кВ частотой 16⅔ Гц. Полученное напряжение повышается трансформатором 9 до 15 кВ и подаётся на шины 8 и 7 тяговой подстанции. Одна из шин 8 рельсовым фидером 6 соединена с рельсами, а другая через фидерные выключатели 5 и фидер контактной сети 4 — с контактной сетью перегона 3. Таким образом, после включения фидерного выключателя 5 тяговая сеть перегона, образованная контактным проводом 3 и рельсом 18, оказывается под напряжением. После этого машинист ЭПС может, подняв токоприёмник 15 и включив выключатель 16, подать напряжение на двигатели 17. Последние начинают вращаться, и ЭПС приходит в движение.

Контактная сеть 1 ст. А подключена к той же шине 7, что и сеть 3 перегона, поэтому перегон и станция в этой системе отделены простым по конструкции воздушным промежутком 2, а не двумя промежутками с нейтральной вставкой, как при системе 25 кВ.

Недостатки системы 15 кВ пониженной частоты заключаются прежде всего в том, что эта система требует громоздких вращающихся преобразователей. Трансформаторы, работающие на пониженной частоте, массивны из-за большой площади сечения стальных сердечников, так как для создания необходимой э.д.с. при пониженной частоте требуется больший магнитный поток. При некоторой предельной для стали индукции его можно получить только увеличивая площадь сечения сердечника трансформатора.

Однако система пониженной частоты 16⅔ Гц обладает и достоинствами: индуктивное сопротивление тяговой сети (пропорциональное частоте) в 3 раза меньше, чем при частоте 50 Гц (соответственно падения напряжения в сети меньше, и расстояния между тяговыми подстанциями могут быть увеличены), электромагнитное влияние на линии связи из-за более низкой частоты незначительно. Так как электрическая энергия из трёхфазной сети передаётся в однофазную через механическое звено (вал 11 между двигателем и генератором), то снимаются все проблемы несимметрии токов и напряжений, в контактной сети не нужны нейтральные вставки. Страны, уже имеющие у себя сеть электрифицированных линий переменного тока пониженной частоты, продолжают электрификацию по этой же системе. Однако другие страны систему пониженной частоты не применяют.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *